Automate Your Unix Tasks

on
=

(

SCIIP

Arnold Robbins & Nelson H. F. Beebe

O’REILLY"

Unix Programming

O’REILLY*
Classic Shell Scripting

Shell scripting skills never go out of style: they're the key to unlocking the real potential
of Unix. Shell scripting is essential for Unix users and system administrators; shell scripts
let you quickly harness and customize the full power of any Unix system. With shell
scripts, you can combine the fundamental Unix text and file processing commands to
crunch data and automate repetitive tasks. Once you master shell scripting, your skills will stand
you in good stead for years to come.

Writing shell scripts requires more than just a knowledge of the shell language. It also requires
familiarity with the individual Unix programs: you need to know why each program is there and how
to use it by itself or in combination with other programs. This book will teach you these facts
about the major Unix tools. In addition, Classic Shell Scripting helps you navigate the tricky waters
of the variations in Unix commands and standards.

The authors are intimately familiar with both the basic techniques and the finer nuances of Unix
program usage. They show you how to create excellent scripts, as well as how to avoid the traps
that can make your best effort a bad shell script. With Classic Shell Scripting, you’ll save hours of
otherwise wasted work.

Not only will you learn how to write useful shell scripts, but also how to customize the shell quickly,
reliably, and portably to get the best out of any individual system. This skill is important for anyone
operating and maintaining Unix or Linux systems. Classic Shell Scripting gives you everything you
need to master essential shell scripting skills.

www.oreilly.com
US $39.99 CAN $45.99

ISBN: 978-0-596-00595-5 sa'ari‘” Includes
W i OANATE Fre s oay

780596005955 Online Edition

9

Classic Shell Scripting

Arnold Robbins and Nelson H. E. Beebe

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Classic Shell Scripting
by Arnold Robbins and Nelson H. F. Beebe

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Tatiana Apandi
Allison Randal

Production Editor: Adam Witwer

Cover Designer: Emma Colby
Interior Designer: David Futato
Printing History:

May 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Classic Shell Scripting, the image of a African tent tortoise, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-0-596-00595-5
[LSI] (2011-03-11]

Table of Contents

Foreword ix
Preface Xi
1. Background 1
1.1 Unix History 1
1.2 Software Tools Principles
1.3 Summary 6
2. GettingStarted............ 8
2.1 Scripting Languages Versus Compiled Languages 8
2.2 Why Use a Shell Script? 9
2.3 A Simple Script 9
2.4 Self-Contained Scripts: The #! First Line 10
2.5 Basic Shell Constructs 12
2.6 Accessing Shell Script Arguments 23
2.7 Simple Execution Tracing 24
2.8 Internationalization and Localization 25
2.9 Summary 28
3. Searching and Substitutionsol 30
3.1 Searching for Text 30
3.2 Regular Expressions 31
3.3 Working with Fields 56

3.4 Summary 65

4. TextProcessingTools 67

4.1 Sorting Text 67
4.2 Removing Duplicates 75
4.3 Reformatting Paragraphs 76
4.4 Counting Lines, Words, and Characters 77
4.5 Printing 78
4.6 Extracting the First and Last Lines 83
4.7 Summary 86
5. PipelinesCan Do AmazingThings, 87
5.1 Extracting Data from Structured Text Files 87
5.2 Structured Data for the Web 94
5.3 Cheating at Word Puzzles 100
5.4 Word Lists 102
5.5 Tag Lists 105
5.6 Summary 107
6. Variables, Making Decisions, and Repeating Actions 109
6.1 Variables and Arithmetic 109
6.2 Exit Statuses 120
6.3 The case Statement 129
6.4 Looping 130
6.5 Functions 135
6.6 Summary 138
7. Input and Output, Files, and Command Evaluation 140
7.1 Standard Input, Output, and Error 140
7.2 Reading Lines with read 140
7.3 More About Redirections 143
7.4 The Full Story on printf 147
7.5 Tilde Expansion and Wildcards 152
7.6 Command Substitution 155
7.7 Quoting 161
7.8 Evaluation Order and eval 162
7.9 Built-in Commands 168
7.10 Summary 175

iv | Tableof Contents

8. Production Scripts

8.1
8.2
8.3

9. Enough awk to Be Dangerous

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

10. Working with Files

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11. Extended Example: Merging User Databases

11.1
11.2
11.3
11.4
11.5
11.6

Path Searching
Automating Software Builds
Summary

The awk Command Line
The awk Programming Model
Program Elements
Records and Fields
Patterns and Actions
One-Line Programs in awk
Statements

User-Defined Functions
String Functions

Numeric Functions
Summary

Listing Files

Updating Modification Times with touch
Creating and Using Temporary Files
Finding Files

Running Commands: xargs

Filesystem Space Information
Comparing Files

Summary

The Problem

The Password Files
Merging Password Files
Changing File Ownership
Other Real-World Issues
Summary

177
192
222

224
225
226
236
238
240
244
252
255
264
266

267
273
274
279
293
295
299
307

308
309
310
317
321
323

Table of Contents

| v

12. Spellchecking
12.1 The spell Program
12.2 The Original Unix Spellchecking Prototype
12.3 Improving ispell and aspell
12.4 A Spellchecker in awk
12.5 Summary

13. Processes
13.1 Process Creation
13.2 Process Listing
13.3 Process Control and Deletion
13.4 Process System-Call Tracing
13.5 Process Accounting
13.6 Delayed Scheduling of Processes
13.7 The /proc Filesystem
13.8 Summary

14. Shell Portability Issues and Extensions
14.1 Gotchas
14.2 The bash shopt Command
14.3 Common Extensions
14.4 Download Information
14.5 Other Extended Bourne-Style Shells
14.6 Shell Versions
14.7 Shell Initialization and Termination
14.8 Summary

15. Secure Shell Scripts: Getting Started
15.1 Tips for Secure Shell Scripts
15.2 Restricted Shell
15.3 Trojan Horses
15.4 Setuid Shell Scripts: A Bad Idea
15.5 ksh93 and Privileged Mode
15.6 Summary

325
326
327
331
350

353
354
360
368
372
373
378
379

381
385
389
402
405
405
406
412

413
416
418
419
421
422

vi | Tableof Contents

A. WritingManualPages 423

B. FilesandFilesystems 437
C. ImportantUnixCommands .. 473
Bibliography 478
Glossary 484
IndeX ... 509

Table of Contents | vii

Foreword

Surely T haven’t been doing shell scripting for 30 years?!? Well, now that I think
about it, I suppose I have, although it was only in a small way at first. (The early
Unix shells, before the Bourne shell, were very primitive by modern standards, and
writing substantial scripts was difficult. Fortunately, things quickly got better.)

In recent years, the shell has been neglected and underappreciated as a scripting lan-
guage. But even though it was Unix’s first scripting language, it’s still one of the best.
Its combination of extensibility and efficiency remains unique, and the improve-
ments made to it over the years have kept it highly competitive with other scripting
languages that have gotten a lot more hype. GUIs are more fashionable than com-
mand-line shells as user interfaces these days, but scripting languages often provide
most of the underpinnings for the fancy screen graphics, and the shell continues to
excel in that role.

The shell’s dependence on other programs to do most of the work is arguably a
defect, but also inarguably a strength: you get the concise notation of a scripting lan-
guage plus the speed and efficiency of programs written in C (etc.). Using a com-
mon, general-purpose data representation—Ilines of text—in a large (and extensible)
set of tools lets the scripting language plug the tools together in endless combina-
tions. The result is far more flexibility and power than any monolithic software pack-
age with a built-in menu item for (supposedly) everything you might want. The early
success of the shell in taking this approach reinforced the developing Unix philoso-
phy of building specialized, single-purpose tools and plugging them together to do
the job. The philosophy in turn encouraged improvements in the shell to allow doing
more jobs that way.

Shell scripts also have an advantage over C programs—and over some of the other
scripting languages too (naming no names!)—of generally being fairly easy to read
and modify. Even people who are not C programmers, like a good many system
administrators these days, typically feel comfortable with shell scripts. This makes
shell scripting very important for extending user environments and for customizing
software packages.

Indeed, there’s a “wheel of reincarnation” here, which I've seen on several software
projects. The project puts simple shell scripts in key places, to make it easy for users
to customize aspects of the software. However, it’s so much easier for the project to
solve problems by working in those shell scripts than in the surrounding C code, that
the scripts steadily get more complicated. Eventually they are too complicated for the
users to cope with easily (some of the scripts we wrote in the C News project were
notorious as stress tests for shells, never mind users!), and a new set of scripts has to
be provided for user customization...

For a long time, there’s been a conspicuous lack of a good book on shell scripting.
Books on the Unix programming environment have touched on it, but only briefly,
as one of several topics, and the better books are long out-of-date. There’s reference
documentation for the various shells, but what’s wanted is a novice-friendly tutorial,
covering the tools as well as the shell, introducing the concepts gently, offering
advice on how to get the best results, and paying attention to practical issues like
readability. Preferably, it should also discuss how the various shells differ, instead of
trying to pretend that only one exists.

This book delivers all that, and more. Here, at last, is an up-to-date and painless
introduction to the first and best of the Unix scripting languages. It’s illustrated with
realistic examples that make useful tools in their own right. It covers the standard
Unix tools well enough to get people started with them (and to make a useful refer-
ence for those who find the manual pages a bit forbidding). I'm particularly pleased
to see it including basic coverage of awk, a highly useful and unfairly neglected tool
which excels in bridging gaps between other tools and in doing small programming
jobs easily and concisely.

I recommend this book to anyone doing shell scripting or administering Unix-
derived systems. I learned things from it; I think you will too.

—Henry Spencer
SP Systems

x | Foreword

Preface

The user or programmer new to Unix” is suddenly faced with a bewildering variety of
programs, each of which often has multiple options. Questions such as “What pur-
pose do they serve?” and “How do I use them?” spring to mind.

This book’s job is to answer those questions. It teaches you how to combine the
Unix tools, together with the standard shell, to get your job done. This is the art of
shell scripting. Shell scripting requires not just a knowledge of the shell language, but
also a knowledge of the individual Unix programs: why each one is there, and how
to use them by themselves and in combination with the other programs.

Why should you learn shell scripting? Because often, medium-size to large problems
can be decomposed into smaller pieces, each of which is amenable to being solved
with one of the Unix tools. A shell script, when done well, can often solve a problem
in a mere fraction of the time it would take to solve the same problem using a con-
ventional programming language such as C or C++. It is also possible to make shell
scripts portable—i.e., usable across a range of Unix and POSIX-compliant systems,
with little or no modification.

When talking about Unix programs, we use the term tools deliberately. The Unix
toolbox approach to problem solving has long been known as the “Software Tools”
philosophy.t

A long-standing analogy summarizes this approach to problem solving. A Swiss
Army knife is a useful thing to carry around in one’s pocket. It has several blades, a
screwdriver, a can opener, a toothpick, and so on. Larger models include more tools,
such as a corkscrew or magnifying glass. However, there’s only so much you can do
with a Swiss Army knife. While it might be great for whittling or simple carving, you

* Throughout this book, we use the term Unix to mean not only commercial variants of the original Unix sys-
tem, such as Solaris, Mac OS X, and HP-UX, but also the freely available workalike systems, such as GNU/
Linux and the various BSD systems: BSD/OS, NetBSD, FreeBSD, and OpenBSD.

T This approach was popularized by the book Software Tools (Addison-Wesley).

Xi

wouldn’t use it, for example, to build a dog house or bird feeder. Instead, you would
move on to using specialized tools, such as a hammer, saw, clamp, or planer. So too,
when solving programming problems, it’s better to use specialized software tools.

Intended Audience

This book is intended for computer users and software developers who find them-
selves in a Unix environment, with a need to write shell scripts. For example, you
may be a computer science student, with your first account on your school’s Unix
system, and you want to learn about the things you can do under Unix that your
Windows PC just can’t handle. (In such a case, it’s likely you’ll write multiple scripts
to customize your environment.) Or, you may be a new system administrator, with
the need to write specialized programs for your company or school. (Log manage-
ment and billing and accounting come to mind.) You may even be an experienced
Mac OS developer moving into the brave new world of Mac OS X, where installa-
tion programs are written as shell scripts. Whoever you are, if you want to learn
about shell scripting, this book is for you. In this book, you will learn:

Software tool design concepts and principles
A number of principles guide the design and implementation of good software
tools. We’'ll explain those principles to you and show them to you in use
throughout the book.

What the Unix tools are
A core set of Unix tools are used over and over again when shell scripting. We
cover the basics of the shell and regular expressions, and present each core tool
within the context of a particular kind of problem. Besides covering what the
tools do, for each tool we show you why it exists and why it has particular
options.

Learning Unix is an introduction to Unix systems, serving as a primer to bring
someone with no Unix experience up to speed as a basic user. By contrast, Unix
in a Nutshell covers the broad swath of Unix utilities, with little or no guidance
as to when and how to use a particular tool. Our goal is to bridge the gap
between these two books: we teach you how to exploit the facilities your Unix
system offers you to get your job done quickly, effectively, and (we hope)
elegantly.

How to combine the tools to get your job done
In shell scripting, it really is true that “the whole is greater than the sum of its
parts.” By using the shell as “glue” to combine individual tools, you can accom-
plish some amazing things, with little effort.

About popular extensions to standard tools
If you are using a GNU/Linux or BSD-derived system, it is quite likely that your
tools have additional, useful features and/or options. We cover those as well.

xi | Preface

About indispensable nonstandard tools
Some programs are not “standard” on most traditional Unix systems, but are
nevertheless too useful to do without. Where appropriate, these are covered as
well, including information about where to get them.

For longtime Unix developers and administrators, the software tools philosophy is
nothing new. However, the books that popularized it, while still being worthwhile
reading, are all on the order of 20 years old, or older! Unix systems have changed
since these books were written, in a variety of ways. Thus, we felt it was time for an
updated presentation of these ideas, using modern versions of the tools and current
systems for our examples. Here are the highlights of our approach:

* Our presentation is POSIX-based. “POSIX” is the short name for a series of for-
mal standards describing a portable operating system environment, at the pro-
grammatic level (C, C++, Ada, Fortran) and at the level of the shell and utilities.
The POSIX standards have been largely successful at giving developers a fight-
ing chance at making both their programs and their shell scripts portable across
a range of systems from different vendors. We present the shell language, and
each tool and its most useful options, as described in the most recent POSIX
standard.

The official name for the standard is IEEE Std. 1003.1-2001." This standard
includes several optional parts, the most important of which are the X/Open Sys-
tem Interface (XSI) specifications. These features document a fuller range of his-
torical Unix system behaviors. Where it’s important, we’ll note changes between
the current standard and the earlier 1992 standard, and also mention XSI-related
features. A good starting place for Unix-related standards is http://www.unix.org/.t

The home page for the Single UNIX Specification is http://www.unix.org/
version3/. Online access to the current standard is available, but requires regis-
tration at http://www.unix.org/version3/online.html.

Occasionally, the standard leaves a particular behavior as “unspecified.” This is
done on purpose, to allow vendors to support historical behavior as extensions, i.e.,
additional features above and beyond those documented within the standard itself.

* Besides just telling you how to run a particular program, we place an emphasis
on why the program exists and on what problem it solves. Knowing why a pro-
gram was written helps you better understand when and how to use it.

* Many Unix programs have a bewildering array of options. Usually, some of these
options are more useful for day-to-day problem solving than others are. For each

* A 2004 edition of the standard was published after this book’s text was finalized. For purposes of learning
about shell scripting, the differences between the 2001 and 2004 standard don’t matter.

t A technical frequently asked questions (FAQ) file about IEEE Std. 1003.1-2001 may be found at http://www.
opengroup.orglaustin/papers/posix_faq.html. Some background on the standard is at http://www.opengroup.
org/austin/papers/backgrounder.html.

Preface | xiii

program, we tell you which options are the most useful. In fact, we typically do
not cover all the options that individual programs have, leaving that task to the
program’s manual page, or to other reference books, such as Unix in a Nutshell
(O’Reilly) and Linux in a Nutshell (O’Reilly).

By the time you’ve finished this book, you should not only understand the Unix
toolset, but also have internalized the Unix mindset and the Software Tools
philosophy.

What You Should Already Know

You should already know the following things:

* How to log in to your Unix system
* How to run programs at the command line

* How to make simple pipelines of commands and use simple I/O redirectors,
such as < and >

* How to put jobs in the background with &
* How to create and edit files

* How to make scripts executable, using chmod

Furthermore, if you’re trying to work the examples here by typing commands at your
terminal (or, more likely, terminal emulator) we recommend the use of a POSIX-
compliant shell such as a recent version of ksh93, or the current version of bash. In
particular, /bin/sh on commercial Unix systems may not be fully POSIX-compliant.

Chapter 14 provides Internet download URLs for ksh93, bash, and zsh.

Chapter Summary

We recommend reading the book in order, as each chapter builds upon the concepts
and material covered in the chapters preceding it. Here is a chapter-by-chapter sum-
mary:

Chapter 1, Background
Here we provide a brief history of Unix. In particular, the computing environ-
ment at Bell Labs where Unix was developed motivated much of the Software
Tools philosophy. This chapter also presents the principles for good Software
Tools that are then expanded upon throughout the rest of the book.

Chapter 2, Getting Started
This chapter starts off the discussion. It begins by describing compiled lan-
guages and scripting languages, and the tradeoffs between them. Then it moves
on, covering the very basics of shell scripting with two simple but useful shell
scripts. The coverage includes commands, options, arguments, shell variables,

xiv | Preface

output with echo and printf, basic I/O redirection, command searching, access-
ing arguments from within a script, and execution tracing. It closes with a look
at internationalization and localization; issues that are increasingly important in
today’s “global village.”

Chapter 3, Searching and Substitutions
Here we introduce text searching (or “matching”) with regular expressions. We
also cover making changes and extracting text. These are fundamental opera-
tions that form the basis of much shell scripting.

Chapter 4, Text Processing Tools
In this chapter we describe a number of the text processing software tools that
are used over and over again when shell scripting. Two of the most important
tools presented here are sort and unig, which serve as powerful ways to orga-
nize and reduce data. This chapter also looks at reformatting paragraphs, count-
ing text units, printing files, and retrieving the first or last lines of a file.

Chapter 5, Pipelines Can Do Amazing Things
This chapter shows several small scripts that demonstrate combining simple
Unix utilities to make more powerful, and importantly, more flexible tools. This
chapter is largely a cookbook of problem statements and solutions, whose com-
mon theme is that all the solutions are composed of linear pipelines.

Chapter 6, Variables, Making Decisions, and Repeating Actions
This is the first of two chapters that cover the rest of the essentials of the shell
language. This chapter looks at shell variables and arithmetic, the important
concept of an exit status, and how decision making and loops are done in the
shell. It rounds off with a discussion of shell functions.

Chapter 7, Input and Output, Files, and Command Evaluation
This chapter completes the description of the shell, focusing on input/output,
the various substitutions that the shell performs, quoting, command-line evalua-
tion order, and shell built-in commands.

Chapter 8, Production Scripts
Here we demonstrate combinations of Unix tools to carry out more complex
text processing jobs. The programs in this chapter are larger than those in
Chapter 5, but they are still short enough to digest in a few minutes. Yet they
accomplish tasks that are quite hard to do in conventional programming lan-
guages such as C, C++, or Java™,

Chapter 9, Enough awk to Be Dangerous
This chapter describes the essentials of the awk language. awk is a powerful lan-
guage in its own right. However, simple, and sometimes, not so simple, awk pro-
grams can be used with other programs in the software toolbox for easy data
extraction, manipulation, and formatting.

Preface | xv

Chapter 10, Working with Files
This chapter introduces the primary tools for working with files. It covers listing
files, making temporary files, and the all-important find command for finding
files that meet specific criteria. It looks at two important commands for dealing
with disk space utilization, and then discusses different programs for comparing
files.

Chapter 11, Extended Example: Merging User Databases
Here we tie things together by solving an interesting and moderately challenging
task.

Chapter 12, Spellchecking
This chapter uses the problem of doing spellchecking to show how it can be
solved in different ways. It presents the original Unix shell script pipeline, as well
as two small scripts to make the freely available ispell and aspell commands
more usable for batch spellchecking. It closes off with a reasonably sized yet
powerful spellchecking program written in awk, which nicely demonstrates the
elegance of that language.

Chapter 13, Processes

This chapter moves out of the realm of text processing and into the realm of job
and system management. There are a small number of essential utilities for man-
aging processes. In addition, this chapter covers the sleep command, which is
useful in scripts for waiting for something to happen, as well as other standard
tools for delayed or fixed-time-of-day command processing. Importantly, the
chapter also covers the trap command, which gives shell scripts control over
Unix signals.

Chapter 14, Shell Portability Issues and Extensions

Here we describe some of the more useful extensions available in both ksh and
bash that aren’t in POSIX. In many cases, you can safely use these extensions in
your scripts. The chapter also looks at a number of “gotchas” waiting to trap the
unwary shell script author. It covers issues involved when writing scripts, and
possible implementation variances. Furthermore, it covers download and build
information for ksh and bash. It finishes up by discussing shell initialization and
termination, which differ among different shell implementations.

Chapter 15, Secure Shell Scripts: Getting Started
In this chapter we provide a cursory introduction to shell scripting security
issues.

Appendix A, Writing Manual Pages
This chapter describes how to write a manual page. This necessary skill is usu-
ally neglected in typical Unix books.

Appendix B, Files and Filesystems
Here we describe the Unix byte-stream filesystem model, contrasting it with
more complex historical filesystems and explaining why this simplicity is a
virtue.

xi | Preface

Appendix C, Important Unix Commands

This chapter provides several lists of Unix commands. We recommend that you

learn these commands and what they do to improve your skills as a Unix developer.
Bibliography

Here we list further sources of information about shell scripting with Unix.
Glossary

The Glossary provides definitions for the important terms and concepts intro-

duced in this book.

Conventions Used in This Book

We leave it as understood that, when you enter a shell command, you press Enter at
the end. Enter is labeled Return on some keyboards.

Characters called Ctrl-X, where X is any letter, are entered by holding down the Ctrl
(or Ctl, or Control) key and then pressing that letter. Although we give the letter in
uppercase, you can press the letter without the Shift key.

Other special characters are newline (which is the same as Ctrl-J), Backspace (the
same as Ctrl-H), Esc, Tab, and Del (sometimes labeled Delete or Rubout).

This book uses the following font conventions:

Italic
Italic is used in the text for emphasis, to highlight special terms the first time
they are defined, for electronic mail addresses and Internet URLs, and in man-
ual page citations. It is also used when discussing dummy parameters that
should be replaced with an actual value, and to provide commentary in
examples.

Constant Width
This is used when discussing Unix filenames, external and built-in commands,
and command options. It is also used for variable names and shell keywords,
options, and functions; for filename suffixes; and in examples to show the con-
tents of files or the output from commands, as well as for command lines or
sample input when they are within regular text. In short, anything related to
computer usage is in this font.

Constant Width Bold
This is used in the text to distinguish regular expressions and shell wildcard pat-
terns from the text to be matched. It is also used in examples to show interaction
between the user and the shell; any text the user types in is shown in Constant
Width Bold. For example:

$ pwd User typed this
/home/tolstoy/novels/w+p System printed this
$

Preface | xvii

Constant Width Italic
This is used in the text and in example command lines for dummy parameters
that should be replaced with an actual value. For example:

$ cd directory

W 8
A)
This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

References to entries in the Unix User’s Manual are written using the standard style:
name(N), where name is the command name and N is the section number (usually 1)
where the information is to be found. For example, grep(1) means the manpage for
grep in section 1. The reference documentation is referred to as the “man page,” or
just “manpage” for short.

We refer both to Unix system calls and C library functions like this: open(), printf().
You can see the manpage for either kind of call by using the man command:

$ man open Look at open(2) manpage
$ man printf Look at printf(3) manpage

When programs are introduced, a sidebar, such as shown nearby, describes the tool
as well as its significant options, usage, and purpose.

Example

Usage
whizprog [options ...] [arguments ...]
This section shows how to run the command, here named whizprog.
Purpose
This section describes why the program exists.
Major options
This section lists the options that are important for everyday use of the program
under discussion.
Behavior
This section summarizes what the program does.

Caveats
If there’s anything to be careful of, it’s mentioned here.

xvii | Preface

Code Examples

This book is full of examples of shell commands and programs that are designed to
be useful in your everyday life as a user or programmer, not just to illustrate the fea-
ture being explained. We especially encourage you to modify and enhance them
yourself.

The code in this book is published under the terms of the GNU General Public
License (GPL), which allows copying, reuse, and modification of the programs. See
the file COPYING included with the examples for the exact terms of the license.

The code is available from this book’s web site: http://www.oreilly.com/catalog/
shellsrptg/index.html.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Classic Shell Scripting, by Arnold Robbins
and Nelson H.F. Beebe. Copyright 2005 O’Reilly Media, Inc., 0-596-00595-4.”

Unix Tools for Windows Systems

Many programmers who got their initial experience on Unix systems and subse-
quently crossed over into the PC world wished for a nice Unix-like environment
(especially when faced with the horrors of the MS-DOS command line!), so it’s not
surprising that several Unix shell-style interfaces to small-computer operating sys-
tems have appeared.

In the past several years, we’ve seen not just shell clones, but also entire Unix envi-
ronments. Two of them use bash and ksh93. Another provides its own shell reimple-
mentation. This section describes each environment in turn (in alphabetical order),
along with contact and Internet download information.

Cygwin

Cygnus Consulting (now Red Hat) created the cygwin environment. First creating
cgywin.dll, a shared library that provides Unix system call emulation, the company
ported a large number of GNU utilities to various versions of Microsoft Windows.
The emulation includes TCP/IP networking with the Berkeley socket API. The great-
est functionality comes under Windows/NT, Windows 2000, and Windows XP,
although the environment can and does work under Windows 95/98/ME, as well.

The cygwin environment uses bash for its shell, GCC for its C compiler, and the rest
of the GNU utilities for its Unix toolset. A sophisticated mount command provides a
mapping of the Windows C:\path notation to Unix filenames.

The starting point for the cygwin project is http://www.cygwin.com/. The first thing to
download is an installer program. Upon running it, you choose what additional

Preface | xix

packages you wish to install. Installation is entirely Internet-based; there are no oftfi-
cial cygwin CDs, at least not from the project maintainers.

DJGPP

The DJGPP suite provides 32-bit GNU tools for the MS-DOS environment. To quote
the web page:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher)

PCs running MS-DOS. It includes ports of many GNU development utilities. The

development tools require an 80386 or newer computer to run, as do the programs

they produce. In most cases, the programs it produces can be sold commercially with-

out license or royalties.
The name comes from the initials of D.]J. Delorie, who ported the GNU C++ com-
piler, g++, to MS-DOS, and the text initials of g++, GPP. It grew into essentially a full
Unix environment on top of MS-DOS, with all the GNU tools and bash as its shell.
Unlike cygwin or UWIN (see further on), you don’t need a version of Windows, just
a full 32-bit processor and MS-DOS. (Although, of course, you can use DJGPP from
within a Windows MS-DOS window.) The web site is http://www.delorie.com/djgpp/.

MKS Toolkit

Perhaps the most established Unix environment for the PC world is the MKS Tool-
kit from Mortice Kern Systems:

MKS Canada — Corporate Headquarters
410 Albert Street

Waterloo, ON

Canada N2L 3V3

1-519-884-2251

1-519-884-8861 (FAX)

1-800-265-2797 (Sales)
http://www.mks.com/

The MKS Toolkit comes in various versions, depending on the development environ-
ment and the number of developers who will be using it. It includes a shell that is
POSIX-compliant, along with just about all the features of the 1988 Korn shell, as
well as more than 300 utilities, such as awk, perl, vi, make, and so on. The MKS
library supports more than 1500 Unix APIs, making it extremely complete and eas-
ing porting to the Windows environment.

AT&T UWIN

The UWIN package is a project by David Korn and his colleagues to make a Unix
environment available under Microsoft Windows. It is similar in structure to cygwin,

xx | Preface

discussed earlier. A shared library, posix.dll, provides emulation of the Unix system
call APIs. The system call emulation is quite complete. An interesting twist is that the
Windows registry can be accessed as a filesystem under /reg. On top of the Unix API
emulation, ksh93 and more than 200 Unix utilities (or rather, reimplementations)
have been compiled and run. The UWIN environment relies on the native Microsoft
Visual C/C++ compiler, although the GNU development tools are available for
download and use with UWIN.

http://www.research.att.com/sw/toolsfuwin/ is the web page for the project. It
describes what is available, with links for downloading binaries, as well as informa-
tion on commercial licensing of the UWIN package. Also included are links to vari-
ous papers on UWIN, additional useful software, and links to other, similar
packages.

The most notable advantage to the UWIN package is that its shell is the authentic
ksh93. Thus, compatibility with the Unix version of ksh93 isn’t an issue.

Safari Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
sa'a" nology book, it means the book is available online through the O’Reilly

Eearrrass Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our abil-
ity, but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions for
future editions, by writing:

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request
a catalog, send email to:

info@oreilly.com

Preface | xxi

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book where we provide access to the examples, errata,
and any plans for future editions. You can access these resources at:

http://www.oreilly.com/catalog/shellsrptg/index.html

Acknowledgments

Each of us would like to acknowledge the other for his efforts. Considering that
we’ve never met in person, the co-operation worked out quite well. Each of us also
expresses our warmest thanks and love to our wives for their contributions, patience,
love, and support during the writing of this book.

Chet Ramey, bash’s maintainer, answered innumerable questions about the finer
points of the POSIX shell. Glenn Fowler and David Korn of AT&T Research, and
Jim Meyering of the GNU Project, also answered several questions. In alphabetical
order, Keith Bostic, George Coulouris, Mary Ann Horton, Bill Joy, Rob Pike, Hugh
Redelmeier (with help from Henry Spencer), and Dennis Ritchie answered several
Unix history questions. Nat Torkington, Allison Randall, and Tatiana Diaz at
O'Reilly Media shepherded the book from conception to completion. Robert
Romano at O’Reilly did a great job producing figures from our original ASCII art and
pic sketches. Angela Howard produced a comprehensive index for the book that
should be of great value to our readers.

In alphabetical order, Geoff Collyer, Robert Day, Leroy Eide, John Halleck, Mark
Lucking, and Henry Spencer acted as technical reviewers for the first draft of this

book. Sean Burke reviewed the second draft. We thank them all for their valuable
and helpful feedback.

Henry Spencer is a Unix Guru’s Unix Guru. We thank him for his kind words in the
Foreword.

Access to Unix systems at the University of Utah in the Departments of Electrical
and Computer Engineering, Mathematics, and Physics, and the Center for High-Per-
formance Computing, as well as guest access kindly provided by IBM and Hewlett-
Packard, were essential for the software testing needed for writing this book; we are
grateful to all of them.

—Arnold Robbins
—Nelson H.F. Beebe

xxii | Preface

CHAPTER 1
Background

This chapter provides a brief history of the development of the Unix system. Under-
standing where and how Unix developed and the intent behind its design will help
you use the tools better. The chapter also introduces the guiding principles of the

Software Tools philosophy, which are then demonstrated throughout the rest of the
book.

1.1 Unix History

It is likely that you know something about the development of Unix, and many
resources are available that provide the full story. Our intent here is to show how the
environment that gave birth to Unix influenced the design of the various tools.

Unix was originally developed in the Computing Sciences Research Center at Bell
Telephone Laboratories.” The first version was developed in 1970, shortly after Bell
Labs withdrew from the Multics project. Many of the ideas that Unix popularized
were initially pioneered within the Multics operating system; most notably the con-
cepts of devices as files, and of having a command interpreter (or shell) that was
intentionally not integrated into the operating system. A well-written history may be
found at http://www.bell-labs.com/history/unix.

Because Unix was developed within a research-oriented environment, there was no
commercial pressure to produce or ship a finished product. This had several
advantages:

* The system was developed by its users. They used it to solve real day-to-day
computing problems.

* The researchers were free to experiment and to change programs as needed.
Because the user base was small, if a program needed to be rewritten from

* The name has changed at least once since then. We use the informal name “Bell Labs” from now on.

scratch, that generally wasn’t a problem. And because the users were the
developers, they were free to fix problems as they were discovered and add
enhancements as the need for them arose.

Unix itself went through multiple research versions, informally referred to with
the letter “V” and a number: V6, V7, and so on. (The formal name followed the
edition number of the published manual: First Edition, Second Edition, and so
on. The correspondence between the names is direct: V6 = Sixth Edition, and V7
= Seventh Edition. Like most experienced Unix programmers, we use both
nomenclatures.) The most influential Unix system was the Seventh Edition,
released in 1979, although earlier ones had been available to educational institu-
tions for several years. In particular, the Seventh Edition system introduced both
awk and the Bourne shell, on which the POSIX shell is based. It was also at this
time that the first published books about Unix started to appear.

The researchers at Bell Labs were all highly educated computer scientists. They
designed the system for their personal use and the use of their colleagues, who
also were computer scientists. This led to a “no nonsense” design approach; pro-
grams did what you told them to do, without being chatty and asking lots of
“are you sure?” questions.

Besides just extending the state of the art, there existed a quest for elegance in
design and problem solving. A lovely definition for elegance is “power cloaked in
simplicity.” The freedom of the Bell Labs environment led to an elegant system,
not just a functional one.

Of course, the same freedom had a few disadvantages that became clear as Unix
spread beyond its development environment:

There were many inconsistencies among the utilities. For example, programs
would use the same option letter to mean different things, or use different letters
for the same task. Also, the regular-expression syntaxes used by different pro-
grams were similar, but not identical, leading to confusion that might otherwise
have been avoided. (Had their ultimate importance been recognized, regular
expression-matching facilities could have been encoded in a standard library.)

Many utilities had limitations, such as on the length of input lines, or on the
number of open files, etc. (Modern systems generally have corrected these defi-
ciencies.)

Sometimes programs weren’t as thoroughly tested as they should have been,
making it possible to accidentally kill them. This led to surprising and confusing
“core dumps.” Thankfully, modern Unix systems rarely suffer from this.

* I first heard this definition from Dan Forsyth sometime in the 1980s.

2

Chapter 1: Background

* The system’s documentation, while generally complete, was often terse and min-
imalistic. This made the system more difficult to learn than was really desirable.”

Most of what we present in this book centers around processing and manipulation of
textual, not binary, data. This stems from the strong interest in text processing that
existed during Unix’s early growth, but is valuable for other reasons as well (which
we discuss shortly). In fact, the first production use of a Unix system was doing text
processing and formatting in the Bell Labs Patent Department.

The original Unix machines (Digital Equipment Corporation PDP-11s) weren’t capa-
ble of running large programs. To accomplish a complex task, you had to break it
down into smaller tasks and have a separate program for each smaller task. Certain
common tasks (extracting fields from lines, making substitutions in text, etc.) were
common to many larger projects, so they became standard tools. This was eventu-
ally recognized as being a good thing in its own right: the lack of a large address
space led to smaller, simpler, more focused programs.

Many people were working semi-independently on Unix, reimplementing each
other’s programs. Between version differences and no need to standardize, a lot of
the common tools diverged. For example, grep on one system used -i to mean
“ignore case when searching,” and it used -y on another variant to mean the same
thing! This sort of thing happened with multiple utilities, not just a few. The com-
mon small utilities were named the same, but shell programs written for the utilities
in one version of Unix probably wouldn’t run unchanged on another.

Eventually the need for a common set of standardized tools and options became
clear. The POSIX standards were the result. The current standard, IEEE Std. 1003.1—
2004, encompasses both the C library level, and the shell language and system utili-
ties and their options.

The good news is that the standardization effort paid off. Modern commercial Unix
systems, as well as freely available workalikes such as GNU/Linux and BSD-derived
systems, are all POSIX-compliant. This makes learning Unix easier, and makes it
possible to write portable shell scripts. (However, do take note of Chapter 14.)

Interestingly enough, POSIX wasn’t the only Unix standardization effort. In particu-
lar, an initially European group of computer manufacturers, named X/Open, pro-
duced its own set of standards. The most popular was XPG4 (X/Open Portability
Guide, Fourth Edition), which first appeared in 1988. There was also an XPGS5, more

* The manual had two components: the reference manual and the user’s manual. The latter consisted of tuto-
rial papers on major parts of the system. While it was possible to learn Unix by reading all the documenta-
tion, and many people (including the authors) did exactly that, today’s systems no longer come with printed
documentation of this nature.

1.1 UnixHistory | 3

widely known as the UNIX 98 standard, or as the “Single UNIX Specification.” XPG5
largely included POSIX as a subset, and was also quite influential.”

The XPG standards were perhaps less rigorous in their language, but covered a
broader base, formally documenting a wider range of existing practice among Unix
systems. (The goal for POSIX was to make a standard formal enough to be used as a
guide to implementation from scratch, even on non-Unix platforms. As a result,
many features common on Unix systems were initially excluded from the POSIX
standards.) The 2001 POSIX standard does double duty as XPG6 by including the X/
Open System Interface Extension (or XSI, for short). This is a formal extension to the
base POSIX standard, which documents attributes that make a system not only
POSIX-compliant, but also XSI-compliant. Thus, there is now only one formal stan-
dards document that implementors and application writers need refer to. (Not sur-
prisingly, this is called the Single Unix Standard.)

Throughout this book, we focus on the shell language and Unix utilities as defined
by the POSIX standard. Where it’s important, we’ll include features that are XSI-spe-
cific as well, since it is likely that you’ll be able to use them too.

1.2 Software Tools Principles

Over the course of time, a set of core principles developed for designing and writing
software tools. You will see these exemplified in the programs used for problem solv-
ing throughout this book. Good software tools should do the following things:

Do one thing well
In many ways, this is the single most important principle to apply. Programs that
do only one thing are easier to design, easier to write, easier to debug, and easier
to maintain and document. For example, a program like grep that searches files
for lines matching a pattern should not also be expected to perform arithmetic.

A natural consequence of this principle is a proliferation of smaller, specialized
programs, much as a professional carpenter has a large number of specialized
tools in his toolbox.

Process lines of text, not binary
Lines of text are the universal format in Unix. Datafiles containing text lines are
easy to process when writing your own tools, they are easy to edit with any avail-
able text editor, and they are portable across networks and multiple machine
architectures. Using text files facilitates combining any custom tools with exist-
ing Unix programs.

* The list of X/Open publications is available at http://www.opengroup.org/publications/catalog/.

4 | Chapter1: Background

Use regular expressions
Regular expressions are a powerful mechanism for working with text. Under-
standing how they work and using them properly simplifies your script-writing
tasks.

Furthermore, although regular expressions varied across tools and Unix ver-
sions over the years, the POSIX standard provides only two kinds of regular
expressions, with standardized library routines for regular-expression matching.
This makes it possible for you to write your own tools that work with regular
expressions identical to those of grep (called Basic Regular Expressions or BREs
by POSIX), or identical to those of egrep (called Extended Regular Expressions or
EREs by POSIX).

Default to standard 1/0
When not given any explicit filenames upon which to operate, a program should
default to reading data from its standard input and writing data to its standard
output. Error messages should always go to standard error. (These are discussed
in Chapter 2.) Writing programs this way makes it easy to use them as data fil-
ters—i.e., as components in larger, more complicated pipelines or scripts.

Don’t be chatty
Software tools should not be “chatty.” No starting processing, almost done, or
finished processing kinds of messages should be mixed in with the regular out-
put of a program (or at least, not by default).

When you consider that tools can be strung together in a pipeline, this makes
sense:

tool 1 < datafile | tool 2 | tool 3 | tool 4 > resultfile

If each tool produces “yes I'm working” kinds of messages and sends them down
the pipe, the data being manipulated would be hopelessly corrupted. Further-
more, even if each tool sends its messages to standard error, the screen would be
full of useless progress messages. When it comes to tools, no news is good news.

This principle has a further implication. In general, Unix tools follow a “you
asked for it, you got it” design philosophy. They don’t ask “are you sure?” kinds
of questions. When a user types rm somefile, the Unix designers figured that he
knows what he’s doing, and rm removes the file, no questions asked.’

Generate the same output format accepted as input
Specialized tools that expect input to obey a certain format, such as header lines
followed by data lines, or lines with certain field separators, and so on, should
produce output following the same rules as the input. This makes it easy to

* For those who are really worried, the -i option to rm forces rm to prompt for confirmation, and in any case
rm prompts for confirmation when asked to remove suspicious files, such as those whose permissions disal-
low writing. As always, there’s a balance to be struck between the extremes of never prompting and always
prompting.

1.2 Software Tools Principles | 5

process the results of one program run through a different program run, per-
haps with different options.

For example, the netpbm suite of programs’ manipulate image files stored in a
Portable BitMap format.t These files contain bitmapped images, described using
a well-defined format. Each tool reads PBM files, manipulates the contained
image in some fashion, and then writes a PBM format file back out. This makes
it easy to construct a simple pipeline to perform complicated image processing,
such as scaling an image, then rotating it, and then decreasing the color depth.

Let someone else do the hard part
Often, while there may not be a Unix program that does exactly what you need,
it is possible to use existing tools to do 90 percent of the job. You can then, if
necessary, write a small, specialized program to finish the task. Doing things this
way can save a large amount of work when compared to solving each problem
fresh from scratch, each time.

Detour to build specialized tools

As just described, when there just isn’t an existing program that does what you
need, take the time to build a tool to suit your purposes. However, before diving
in to code up a quick program that does exactly your specific task, stop and
think for a minute. Is the task one that other people are going to need done? Is it
possible that your specialized task is a specific case of a more general problem
that doesn’t have a tool to solve it? If so, think about the general problem, and
write a program aimed at solving that. Of course, when you do so, design and
write your program so it follows the previous rules! By doing this, you graduate
from being a tool user to being a toolsmith, someone who creates tools for
others!

1.3 Summary

Unix was originally developed at Bell Labs by and for computer scientists. The lack
of commercial pressure, combined with the small capacity of the PDP-11 minicom-
puter, led to a quest for small, elegant programs. The same lack of commercial pres-
sure, though, led to a system that wasn’t always consistent, nor easy to learn.

As Unix spread and variant versions developed (notably the System V and BSD vari-
ants), portability at the shell script level became difficult. Fortunately, the POSIX
standardization effort has borne fruit, and just about all commercial Unix systems
and free Unix workalikes are POSIX-compliant.

* The programs are not a standard part of the Unix toolset, but are commonly installed on GNU/Linux and
BSD systems. The WWW starting point is http://netpbm.sourceforge.net/. From there, follow the links to the
Sourceforge project page, which in turn has links for downloading the source code.

T There are three different formats; see the pnm(5) manpage if netpbm is installed on your system.

6 | Chapter1: Background

The Software Tools principles as we’ve outlined them provide the guidelines for the
development and use of the Unix toolset. Thinking with the Software Tools mindset
will help you write clear shell programs that make correct use of the Unix tools.

13 Summary | 7

CHAPTER 2
Getting Started

When you need to get some work done with a computer, it’s best to use a tool that’s
appropriate to the job at hand. You don’t use a text editor to balance your check-
book or a calculator to write a proposal. So too, different programming languages
meet different needs when it comes time to get some computer-related task done.

Shell scripts are used most often for system administration tasks, or for combining
existing programs to accomplish some small, specific job. Once you’ve figured out
how to get the job done, you can bundle up the commands into a separate program,
or script, which you can then run directly. What’s more, if it’s useful, other people
can make use of the program, treating it as a black box, a program that gets a job
done, without their having to know how it does so.

In this chapter we’ll make a brief comparison between different kinds of program-
ming languages, and then get started writing some simple shell scripts.

2.1 Scripting Languages Versus Compiled
Languages

Most medium and large-scale programs are written in a compiled language, such as
Fortran, Ada, Pascal, C, C++, or Java. The programs are translated from their origi-
nal source code into object code which is then executed directly by the computer’s
hardware.”

The benefit of compiled languages is that they’re efficient. Their disadvantage is that
they usually work at a low level, dealing with bytes, integers, floating-point num-
bers, and other machine-level kinds of objects. For example, it’s difficult in C++ to
say something simple like “copy all the files in this directory to that directory over
there.”

* This statement is not quite true for Java, but it’s close enough for discussion purposes.

So-called scripting languages are usually interpreted. A regular compiled program,
the interpreter, reads the program, translates it into an internal form, and then exe-
cutes the program.”

2.2 Why Use a Shell Script?

The advantage to scripting languages is that they often work at a higher level than
compiled languages, being able to deal more easily with objects such as files and
directories. The disadvantage is that they are often less efficient than compiled lan-
guages. Usually the tradeoff is worthwhile; it can take an hour to write a simple
script that would take two days to code in C or C++, and usually the script will run
fast enough that performance won’t be a problem. Examples of scripting languages
include awk, Perl, Python, Ruby, and the shell.

Because the shell is universal among Unix systems, and because the language is stan-
dardized by POSIX, shell scripts can be written once and, if written carefully, used
across a range of systems. Thus, the reasons to use a shell script are:
Simplicity
The shell is a high-level language; you can express complex operations clearly
and simply using it.
Portability
By using just POSIX-specified features, you have a good chance of being able to
move your script, unchanged, to different kinds of systems.

Ease of development
You can often write a powerful, useful script in little time.

2.3 ASimple Script

Let’s start with a simple script. Suppose that you’d like to know how many users are
currently logged in. The who command tells you who is logged in:

$ who

george pts/2 Dec 31 16:39 (valley-forge.example.com)
betsy pts/3 Dec 27 11:07 (flags-r-us.example.com)
benjamin dtlocal Dec 27 17:55 (kites.example.com)
jhancock pts/5 Dec 27 17:55 (:32)

camus pts/6 Dec 31 16:22

tolstoy pts/14 Jan 2 06:42

On a large multiuser system, the listing can scroll off the screen before you can count
all the users, and doing that every time is painful anyway. This is a perfect

* See http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Ousterhout’s+dichotomy for an attempt to formalize the dis-
tinction between compiled and interpreted language. This formalization is not universally agreed upon.

2.3 ASimpleScript | 9

opportunity for automation. What’s missing is a way to count the number of users.
For that, we use the wc (word count) program, which counts lines, words, and char-
acters. In this instance, we want wc -1, to count just lines:
$ who | wec -1 Count users
6
The | (pipe) symbol creates a pipeline between the two programs: who’s output
becomes wc’s input. The result, printed by wc, is the number of users logged in.

The next step is to make this pipeline into a separate command. You do this by
entering the commands into a regular file, and then making the file executable, with
chmod, like so:

$ cat > nusers Create the file, copy terminal input with cat
who | we -1 Program text
D Ctrl-D is end-of-file
$ chmod +x nusers Make it executable
$./nusers Do a test run
6 Output is what we expect

This shows the typical development cycle for small one- or two-line shell scripts:
first, you experiment directly at the command line. Then, once you’ve figured out the
proper incantations to do what you want, you put them into a separate script and
make the script executable. You can then use that script directly from now on.

2.4 Self-Contained Scripts: The #! First Line

When the shell runs a program, it asks the Unix kernel to start a new process and
run the given program in that process. The kernel knows how to do this for com-
piled programs. Our nusers shell script isn’t a compiled program; when the shell
asks the kernel to run it, the kernel will fail to do so, returning a “not executable for-
mat file” error. The shell, upon receiving this error, says “Aha, it’s not a compiled
program, it must be a shell script,” and then proceeds to start a new copy of /bin/sh
(the standard shell) to run the program.

The “fall back to /bin/sh” mechanism is great when there’s only one shell. However,
because current Unix systems have multiple shells, there needs to be a way to tell the
Unix kernel which shell to use when running a particular shell script. In fact, it helps
to have a general mechanism that makes it possible to directly invoke any program-
ming language interpreter, not just a command shell. This is done via a special first
line in the script file—one that begins with the two characters #!.

When the first two characters of a file are #!, the kernel scans the rest of the line for
the full pathname of an interpreter to use to run the program. (Any intervening
whitespace is skipped.) The kernel also scans for a single option to be passed to that
interpreter. The kernel invokes the interpreter with the given option, along with the

10 | Chapter2: Getting Started

rest of the command line. For example, assume a csh script” named /usr/ucb/
whizprog, with this first line:

#! /bin/csh -f

Furthermore, assume that /usr/ucb is included in the shell’s search path (described
later). A user might type the command whizprog -q /dev/ttyo1. The kernel inter-
prets the #! line and invokes csh as follows:

/bin/csh -f /usr/ucb/whizprog -q /dev/ttyo1

This mechanism makes it easy to invoke any interpreted language. For example, it is
a good way to invoke a standalone awk program:

#! /bin/awk -f

awk program here
Shell scripts typically start with #! /bin/sh. Use the path to a POSIX-compliant shell
if your /bin/sh isn’t POSIX compliant. There are also some low-level “gotchas” to
watch out for:

* On modern systems, the maximum length of the #! line varies from 63 to 1024
characters. Try to keep it less than 64 characters. (See Table 2-1 for a representa-
tive list of different limits.)

* On some systems, the “rest of the command line” that is passed to the inter-
preter includes the full pathname of the command. On others, it does not; the
command line as entered is passed to the program. Thus, scripts that look at the
command-line arguments cannot portably depend on the full pathname being
present.

* Don’t put any trailing whitespace after an option, if present. It will get passed
along to the invoked program along with the option.

* You have to know the full pathname to the interpreter to be run. This can pre-
vent cross-vendor portability, since different vendors put things in different
places (e.g., /bin/awk versus /usr/bin/awk).

* On antique systems that don’t have #! interpretation in the kernel, some shells
will do it themselves, and they may be picky about the presence or absence of
whitespace characters between the #! and the name of the interpreter.

Table 2-1 lists the different line length limits for the #! line on different Unix sys-
tems. (These were discovered via experimentation.) The results are surprising, in that
they are often not powers of two.

* /bin/csh is the C shell command interpreter, originally developed at the University of California at Berkeley.
We don’t cover C shell programming in this book for many reasons, the most notable of which are that it’s
universally regarded as being a poorer shell for scripting, and because it’s not standardized by POSIX.

2.4 Self-Contained Scripts: The #! FirstLine | 11

Table 2-1. #! line length limits on different systems

Vendor platform 0/S version Maximum length
Apple Power Mac Mac Darwin 7.2 (Mac 05 10.3.2) 512
Compag/DEC Alpha 0SF/1 4.0 1024
Compag/DEC/HP Alpha 0SF/1 5.1 1000
GNU/Linuxa Red Hat 6,7, 8, 9; Fedora 1 127
HP PA-RISC and Itanium-2 HP-UX 10, 11 127
IBM RS/6000 AIX4.2 255
Intel x86 FreeBSD 4.4 64
Intel x86 FreeBSD 4.9,5.0,5.1 128
Intel x86 NetBSD 1.6 63
Intel x86 OpenBSD 3.2 63
SGI MIPS IRIX 6.5 255
Sun SPARC, x86 Solaris 7,8,9,10 1023

a Allarchitectures.

The POSIX standard leaves the behavior of #! “unspecified.” This is the standardese
way of saying that such a feature may be used as an extension while staying POSIX-
compliant.

All further scripts in this book start with a #! line. Here’s the revised nusers program:

Show contents
Magic #! line

$ cat nusers
#! /bin/sh -

who | we -1 Commands to run

The bare option - says that there are no more shell options; this is a security feature
to prevent certain kinds of spoofing attacks.

2.5 BasicShell Constructs

In this section we introduce the basic building blocks used in just about all shell
scripts. You will undoubtedly be familiar with some or all of them from your interac-
tive use of the shell.

2.5.1 Commands and Arguments

The shell’s most basic job is simply to execute commands. This is most obvious
when the shell is being used interactively: you type commands one at a time, and the
shell executes them, like so:

$ cd work ; 1s -1 whizprog.c

-IW-I--Y-- 1 tolstoy devel
$ make

30252 Jul 9 22:52 whizprog.c

12 | (Chapter2: Getting Started

These examples show the basics of the Unix command line. First, the format is sim-
ple, with whitespace (space and/or tab characters) separating the different compo-
nents involved in the command.

Second, the command name, rather logically, is the first item on the line. Most typi-
cally, options follow, and then any additional arguments to the command follow the
options. No gratuitous syntax is involved, such as:

COMMAND=CD, ARG=WORK

COMMAND=LISTFILES,MODE=LONG,ARG=WHIZPROG.C
Such command languages were typical of the larger systems available when Unix was
designed. The free-form syntax of the Unix shell was a real innovation in its time,
contributing notably to the readability of shell scripts.

Third, options start with a dash (or minus sign) and consist of a single letter.
Options are optional, and may require an argument (such as cc -o whizprog
whizprog.c). Options that don’t require an argument can be grouped together: e.g.,
1s -1t whizprog.c rather than 1s -1 -t whizprog.c (which works, but requires more
typing).
Long options are increasingly common, particularly in the GNU variants of the stan-
dard utilities, as well as in programs written for the X Window System (X11). For
example:

$ cd whizprog-1.1

$ patch --verbose --backup -p1 < /tmp/whizprog-1.1-1.2-patch
Depending upon the program, long options start with either one dash, or with two
(as just shown). (The < /tmp/whizprog-1.1-1.2-patch is an I/O redirection. It causes
patch to read from the file /tmp/whizprog-1.1-1.2-patch instead of from the key-
board. I/O redirection is one of the fundamental topics covered later in the chapter.)

Originally introduced in System V, but formalized in POSIX, is the convention that
two dashes (--) should be used to signify the end of options. Any other arguments
on the command line that look like options are instead to be treated the same as any
other arguments (for example, treated as filenames).

Finally, semicolons separate multiple commands on the same line. The shell exe-
cutes them sequentially. If you use an ampersand (&) instead of a semicolon, the shell
runs the preceding command in the background, which simply means that it doesn’t
wait for the command to finish before continuing to the next command.

The shell recognizes three fundamental kinds of commands: built-in commands,
shell functions, and external commands:

* Built-in commands are just that: commands that the shell itself executes. Some
commands are built-in from necessity, such as cd to change the directory, or read
to get input from the user (or a file) into a shell variable. Other commands are
often built into the shell for efficiency. Most typically, these include the test

2.5 BasicShell Constructs | 13

command (described later in “The test Command” [6.2.4]), which is heavily
used in shell scripting, and I/O commands such as echo or printf.

* Shell functions are self-contained chunks of code, written in the shell language,
that are invoked in the same way as a command is. We delay discussion of them
until “Functions” [6.5]. At this point, it’s enough to know that they’re invoked,
and they act, just like regular commands.

* External commands are those that the shell runs by creating a separate process.
The basic steps are:

a. Create a new process. This process starts out as a copy of the shell.

b. In the new process, search the directories listed in the PATH variable for the
given command. /bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin might be a
typical value of PATH. (The path search is skipped when a command name
contains a slash character, /.)

c. In the new process, execute the found program by replacing the running
shell program with the new program.

d. When the program finishes, the original shell continues by reading the next
command from the terminal, or by running the next command in the script.
This is illustrated in Figure 2-1.

parent shell Waits for child to finish parent shell

Figure 2-1. Program execution

That’s the basic process. Of course, the shell can do many other things for you, such
as variable and wildcard expansion, command and arithmetic substitution, and so
on. We'll touch on these topics as we progress through the book.

2.5.2 Variables

A variable is a name that you give to a particular piece of information, such as first_
name or driver lic_no. All programming languages have variables, and the shell is no
exception. Every variable has a value, which is the contents or information that you
assigned to the variable. In the case of the shell, variable values can be, and often are,
empty—that is, they contain no characters. This is legitimate, common, and useful.
Empty values are referred to as null, and we’ll use that term a lot in the rest of the

book.

14 | Chapter2: Getting Started

Shell variable names start with a letter or underscore, and may contain any number
of following letters, digits, or underscores. There is no limit on the number of charac-
ters in a variable name. Shell variables hold string values, and there is also no limit
on the number of characters that they may hold. (The Bourne shell was one of the
few early Unix programs to follow a “no arbitrary limits” design principle.) For
example:
$ myvar=this_is_a_long_string_that_does_not_mean_much Assign a value
$ echo $myvar Print the value
this_is_a_long_string that_does_not_mean_much
As you can see, variables are assigned values by writing the variable name, immedi-
ately followed by an = character, and the new value, without any intervening spaces.
Shell variable values are retrieved by prefixing the variable’s name with a $ character.
Use quotes when assigning a literal value that contains spaces:
first=isaac middle=bashevis last=singer Multiple assignments allowed on one line
fullname="1isaac bashevis singer" Use quotes for whitespace in value
oldname=$fullname Quotes not needed to preserve spaces in value
As shown in the previous example, double quotes (discussed later in” “Quoting” [7.7])
aren’t necessary around the value of one variable being used as the new value of a sec-
ond variable. Using them, though, doesn’t hurt either, and is necessary when concate-
nating variables:

fullname="$first $middle $last" Double quotes required here

2.5.3 Simple Output with echo

We just saw the echo command for printing out the value of myvar, and you’ve prob-
ably used it at the command line. echo’s job is to produce output, either for prompt-
ing or to generate data for further processing.

The original echo command simply printed its arguments back to standard output,
with each one separated from the next by a single space and terminated with a
newline:

$ echo Now is the time for all good men

Now is the time for all good men

$ echo to come to the aid of their country.
to come to the aid of their country.

Unfortunately, over time, different versions of echo developed. The BSD version
accepted a first argument of -n, which would make it omit the trailing newline. For
example (the underscore represents the terminal’s cursor):

$ echo -n "Enter your name: Print prompt
Enter your name: _ Enter data

2.5 BasicShell Constructs | 15

echo

Usage
echo [string ...]

Purpose
To produce output from shell scripts.

Major options
None.

Behavior
echo prints each argument to standard output, separated by a single space and ter-
minated by a newline. It interprets escape sequences within each string that rep-
resent special characters and also control its behavior.

Caveats
Historical differences in behavior among Unix variants make it difficult to use echo
portably for all but the simplest kinds of output.
Many versions support a -n option. When supplied, echo omits the final newline
from its output. This is useful for printing prompts. However, the current POSIX-
standard version of echo does not include this option. See the discussion in the
text.

The System V version interpreted special escape sequences (explained shortly) within
the arguments. For example, \c indicated that echo should not print the final
newline:

$ echo "Enter your name: \c" Print prompt

Enter your name: _ Enter data
Escape sequences are a way to represent hard-to-type or hard-to-see characters
within a program. When echo sees an escape sequence, it prints the corresponding
character. The valid escape sequences are listed in Table 2-2.

Table 2-2. echo escape sequences

Sequence Description

\a Alert character, usually the ASCII BEL character.

\b Backspace.

\c Suppress the final newline in the output. Furthermore, any characters leftin
the argument, and any following arguments, are ignored (not printed).

\f Formfeed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

16 | Chapter2: Getting Started

Table 2-2. echo escape sequences (continued)

Sequence Description
\\ Aliteral backslash character.
\oddd Character represented as a 1- to 3-digit octal value.

When shell scripting, the \a sequence is most useful for getting a user’s attention.
The \oddd sequence is useful for (very) primitive cursor manipulation by sending ter-
minal escape sequences, but we don’t recommend this.

Since many systems still default to the BSD behavior for echo, we only use its sim-
plest form throughout this book. We use printf for more complicated output.

2.5.4 Fancier Output with printf

The differences between the two versions of echo led to one of the most infamous of
the Unix-variant portability headaches. During the first round of standardization for
POSIX, the committee members could not agree on how to standardize echo, so they
came up with a compromise. While echo was part of the POSIX standard, the stan-
dard didn’t specify the behavior if the first argument was -n, or if any argument con-
tained escape sequences. Instead the behavior was left as implementation-defined,
meaning that each vendor was required to document what its version of echo does.”
In effect, echo could be used portably only if it was used in the simplest fashion.
Instead, they adopted the printf command from the Ninth Edition Research Unix
system. This command is more flexible than echo, but at the cost of some added
complexity.

The printf command is modeled after the printf() library routine from the C
library. It closely duplicates the facilities of that function (see the manual pages for
printf(3)), and it’s likely that if you’ve done any programming in C, C++, awk, Perl,
Python, or Tcl, you’re familiar with the basics. Of course, there are a few quirks spe-
cific to the shell-level version.

The printf command can output a simple string just like the echo command:
printf "Hello, world\n"

The main difference that you will notice immediately is that, unlike echo, printf does
not automatically supply a newline. You must specify it explicitly as \n. The full syn-
tax of the printf command has two parts:

printf format-string [arguments ...]

* Interestingly enough, the current version of the standard has echo being essentially the same as the System V
version, which processes escape sequences in its arguments and does not treat -n specially.

2.5 BasicShell Constructs | 17

The first part is a string describing the desired output; this is best supplied as a string
constant in quotes. This string is a mixture of characters to be printed literally, and
format specifications, which are special placeholders that describe how to print each
corresponding argument.

The second part is an argument list, such as a list of strings or variable values, that
correspond to the format specifications. (If there are more arguments than format
specifications, printf cycles through the format specifications in the format string,
reusing them in order, until done.) A format specification is preceded by a percent
sign (%) and the specifier is one of the characters described later in the book. Two of
the main format specifiers are %s for strings and %d for decimal integers.

Within the format string, regular characters are printed verbatim. Escape sequences,
similar to those of echo, are interpreted and then output as the corresponding charac-
ter. Format specifiers, which begin with the character % and end with one of a
defined set of letters, control the output of the following corresponding arguments.
For example, %s is used for strings:

$ printf "The first program always prints '%s, %s!'\n" Hello world
The first program always prints 'Hello, world!'

All the details on printf are given in “The Full Story on printf” [7.4].

2.5.5 Basicl/0 Redirection

Standard I/0 is perhaps the most fundamental concept in the Software Tools philos-
ophy.” The idea is that programs should have a data source, a data sink (where data
goes), and a place to report problems. These are referred to by the names standard
input, standard output, and standard error, respectively. A program should neither
know, nor care, what kind of device lies behind its input and outputs: disk files, ter-
minals, tape drives, network connections, or even another running program! A pro-
gram can expect these standard places to be already open and ready to use when it
starts up.

Many, if not most, Unix programs follow this design. By default, they read standard
input, write standard output, and send error messages to standard error. Such pro-
grams are called filters, for reasons that will become clear shortly. The default for
standard input, standard output, and standard error is the terminal. This can be seen
with cat:

$ cat With no arguments, read standard input, write standard output
now is the time Typed by the user
now is the time Echoed back by cat

for all good men

* “Standard 1/0,” as used here, should not be confused with the C library’s standard /O library, whose inter-
face is defined in <stdio.h>, although that library’s job is to provide this abstraction to C programs.

18 | Chapter2: Getting Started

for all good men

to come to the aid of their country

to come to the aid of their country

D Ctrl-D, End of file
You may be wondering, who initializes standard input, output, and error for a run-
ning program? After all, somebody has to open these files for any given program, even
the interactive shell that each user sees at login!

The answer is that when you log in, Unix arranges the default place for standard
input, output, and error to be your terminal. I/O redirection is the process by which
you, at the terminal interactively, or from within a shell script, then arrange to
change the places from which input comes or to which output goes.

2.5.5.1 Redirection and pipelines

The shell provides several syntactic notations for specifying how to change the
default I/O sources and destinations. We cover the basic ones here; later we’ll pro-
vide the full story. Moving from simple to complex, these notations are as follows:

Change standard input with <
Use program < file to make program’s standard input be file:
tr -d '\r' < dos-file.txt ...
Change standard output with >
Use program > file to make program’s standard output be file:
tr -d '\r' < dos-file.txt > unix-file.txt
This tr invocation removes ASCII carriage-return characters from dos-file.txt,
placing the transformed data into unix-file.txt. The original data in dos-file.
txt is not changed. (The tr command is discussed in more detail in Chapter 5.)

The > redirector creates the destination file if it doesn’t exist. However, if the file
does exist, then it is truncated; all existing contents are lost.

Append to a file with >>
Use program >> file to send program’s standard output to the end of file.

Like >, the >> operator creates the destination file if it doesn’t exist. However, if
it already exists, instead of truncating the file, any new data generated by the
running program is appended to the end of the file:

for f in dos-file*.txt
do

tr -d '\r' < $f >> big-unix-file.txt
done

(The for loop is described in “Looping” [6.4].)
Create pipelines with |

Use programi | program2 to make the standard output of programi become the
standard input of program2.

2.5 BasicShell Constructs | 19

Although < and > connect input and output to files, a pipeline hooks together
two or more running programs. The standard output of the first program
becomes the standard input of the second one. In favorable cases, pipelines can
run as much as ten times faster than similar code using temporary files. Most of
this book is about learning how to hook together the various tools into pipelines
of increasing complexity and power. For example:

tr -d '\r' < dos-file.txt | sort > unix-file.txt

This pipeline removes carriage-return characters from the input file, and then
sorts the data, sending the resulting output to the destination file.

tr

Usage
tr [options | source-char-1ist replace-char-1list
Purpose
To transliterate characters. For example, converting uppercase characters to low-
ercase. Options let you remove characters and compress runs of identical charac-
ters.
Major options
-C
Complement the values in source-char-1ist. The characters that tr trans-
lates then become those that are not in source-char-1ist. This option is usu-
ally used with one of -d or -s.

Like -c but work on (possibly multibyte) characters, not binary byte values.
See Caveats.

Delete characters in source-char-1ist from the input instead of transliterat-
ing them.

“Squeeze out” duplicate characters. Each sequence of repeated characters
listed in source-char-1ist is replaced with a single instance of that character.
Behavior
Acts as a filter, reading characters from standard input and writing them to stan-
dard output. Each input character in source-char-1ist is replaced with the corre-
sponding character in replace-char-1ist. POSIX-style character and equivalence
classes may be used, and tr also supports a notation for repeated characters in
replace-char-1list. See the manual pages for tr(1) for the details on your system.
Caveats
According to POSIX, the -c option operates on the binary byte values, whereas
-C operates on characters as specified by the current locale. As of early 2005, many
systems don’t yet support the -C option.

20

| Chapter2: Getting Started

When working with the Unix tools, it helps to visualize data as being similar to water
in a pipeline. Untreated water goes into a water-processing plant and passes through
a variety of filters, until the final output is water fit for human consumption.

Similarly, when scripting, you often have raw data in some defined input format, and
you need processed data as the result. (Processing may mean any number of things:
sorting, summing and averaging, formatting for printing, etc.) You start with the
original data, and then construct a pipeline, step by step, where each stage in the
pipeline further refines the data.

If you’re new to Unix, it may help your visualization if you look at < and > as data
“funnels”—data goes into the big end and comes out the small end.

WS

A
S A final tip: when constructing pipelines, try to write them so that the
fs\ amount of data is reduced at each stage. In other words, if you have
b two steps that could be done in either order relative to each other, put

the one that will reduce the amount of data first in the pipeline. This
improves the overall efficiency of your script, since Unix will have to
move less data between programs, and each program in turn will have
less work to do.

For example, use grep to choose interesting lines before using sort to
sort them; this way sort has less work to do.

2.5.5.2 Special files: /dev/null and /dev/tty

Unix systems provide two special files that are particularly useful in shell program-
ming. The first file, /dev/null, is often known as the “bit bucket.” Data sent to this
file is thrown away by the system. In other words, a program writing data to this file
always believes that it has successfully written the data, but in practice, nothing is
done with it. This is useful when you need a command’s exit status (described in
“Exit Statuses” [6.2]) but not its output. For example, to test if a file contains a
pattern:

if grep pattern myfile > /dev/null

then

Pattern is there
else

Pattern is not there
fi

In contrast to writes, reading from /dev/null always returns end-of-file immediately.
Reading from /dev/null is rare in shell programming, but it’s important to know
how the file behaves.

The other special file is /dev/tty. When a program opens this file, Unix automati-
cally redirects it to the real terminal (physical console or serial port, or pseudotermi-
nal for network and windowed logins) associated with the program. This is

2.5 Basic Shell Constructs | 21

particularly useful for reading input that must come from a human, such as a pass-
word. It is also useful, although less so, for generating error messages:

printf "Enter new password: Prompt for input

stty -echo Turn off echoing of typed characters
read pass < /dev/tty Read password

printf "Enter again: " Prompt again

read pass2 < /dev/tty Read again for verification

stty echo Don't forget to turn echoing back on

The stty (set tty) command controls various settings of your terminal (or window)."
The -echo option turns off the automatic printing (echoing) of every character you
type; stty echo restores it.

2.5.6 Basic Command Searching

Earlier, we mentioned that the shell searches for commands along the search path,
$PATH. This is a colon-separated list of directories in which commands are found.
Commands may be compiled executables or shell scripts; there’s no real distinction
from the user’s perspective.

The default path varies from system to system. It will contain at least /bin and /usx/
bin. It might contain /usr/X11R6/bin for X Windows programs, and it might also
contain /usr/local/bin for programs that your local system administrator has
installed. For example:

$ echo $PATH

/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin
The term “bin” for directories that hold executables is short for binary. However,
you can also think of it as having the corresponding English meaning—a place to
hold things; in this case, executable programs.

When you write your own scripts, it would be nice to have your own bin in which to
place them, and have the shell find them automatically. This is easy to do. Just cre-
ate your own bin directory and add it to the list in $PATH:

$ cd Change to home directory
$ mkdir bin Make a personal “bin” directory
$ mv nusers bin Put our script there
$ PATH=$PATH: $HOME/bin Append our bin directory to PATH
$ nusers Test it out
6 The shell finds it

To make the change permanent, add your bin directory to $PATH in your .profile
file, which is read every time you log in, by putting a line like this at the end of it:

PATH=$PATH: $HOME/bin

*

stty is possibly the most baroque and complicated Unix command in existence. See the stty(1) manpage for
the gory details, or Unix in a Nutshell.

22 | Chapter2: Getting Started

Empty components in $PATH mean “the current directory.” An empty component can
be designated by two successive colons in the middle of the path value, or by a lead-
ing or trailing colon, which puts the current directory first or last, respectively, in the
path search:
PATH=:/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin Current directory first
PATH=/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin: Current directory last
PATH=/bin:/usx/bin:/usr/X11R6/bin::/usr/local/bin Current directory in middle
If you wish to include the current directory in the search path, it is preferable to use
an explicit dot in $PATH; this makes it clearer to the reader of your program what’s
going on.

In our testing, we found two versions of the same system that did not correctly sup-
port supplying an empty component at the end of $PATH. Empty components thus
represent a minor portability problem.

W8
S In general, you should not have the current directory in your path at
ﬁ:\ all. Tt represents a security problem. (See Chapter 15 for more infor-
& - . .
o} mation.) We describe empty components only so that you understand

how path searching works.

2.6 Accessing Shell Script Arguments

The so-called positional parameters represent a shell script’s command-line argu-
ments. They also represent a function’s arguments within shell functions. Individual
arguments are named by integer numbers. For historical reasons, you have to enclose
the number in braces if it’s greater than nine:

echo first arg is $1

echo tenth arg is ${10}
Special “variables” provide access to the total number of arguments that were
passed, and to all the arguments at once. We provide the details later, in “Positional
parameters” [6.1.2.2].

Suppose you want to know what terminal a particular user is using. Well, once
again, you could use a plain who command and manually scan the output. However,
that’s difficult and error prone, especially on systems with lots of users. This time
what you want to do is search through who’s output for a particular user. Well, any-
time you want to do searching, that’s a job for the grep command, which prints lines
matching the pattern given in its first argument. Suppose you're looking for user
betsy because you really need that flag you ordered from her:

$ who | grep betsy Where is betsy?
betsy pts/3 Dec 27 11:07 (flags-r-us.example.com)

2.6 Accessing Shell Script Arguments | 23

Now that we know how to find a particular user, we can put the commands into a
script, with the script’s first argument being the username we want to find:

$ cat > finduser Create new file
#! /bin/sh
finduser --- see if user named by first argument is logged in

who | grep $1

D End-of-file

$ chmod +x finduser Make it executable

$./finduser betsy Test it: find betsy

betsy pts/3 Dec 27 11:07 (flags-r-us.example.com)
$./finduser benjamin Now look for good old Ben
benjamin dtlocal Dec 27 17:55 (kites.example.com)

$ mv finduser $HOME/bin Save it in our personal bin

The line beginning with # finduser ... is a comment. The shell ignores everything
from the # to the end of the line. (This is serendipitous; the special #! line described
earlier acts as a comment when the shell reads a script.) Commenting your programs
is always a good idea. It will help someone else, or you a year from now, to figure out
what you were doing and why. Once we see that the program works, we move it to
our personal bin directory.

This program isn’t perfect. What happens if we don’t give it any arguments?

$ finduser

Usage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.
We will see in “The test Command” [6.2.4], how to test the number of command-
line arguments and take appropriate action when the right number isn’t supplied.

2.7 Simple Execution Tracing

Because program development is a human activity, there will be times when your
script just doesn’t do what you want it to do. One way to get some idea of what your
program is doing is to turn on execution tracing. This causes the shell to print out
each command as it’s executed, preceded by “+ —that is, a plus sign followed by a
space. (You can change what gets printed by assigning a new value to the PS4 shell
variable.) For example:

$ sh -x nusers Run with tracing on
+ who Traced commands
+we -1

7 Actual output

24 | Chapter2: Getting Started

You can turn execution tracing on within a script by using the command set -x, and
turn it off again with set +x. This is more useful in fancier scripts, but here’s a sim-
ple program to demonstrate:

$ cat > tracel.sh Create script

#! /bin/sh

set -x Turn on tracing

echo 1st echo Do something

set +x Turn off tracing

echo 2nd echo Do something else

D Terminate with end-of-file
$ chmod +x tracei.sh Make program executable
$./tracel.sh Run it

+ echo 1st echo First traced line

1st echo Output from command

+ set +x Next traced line

2nd echo Output from next command

When run, the set -x is not traced, since tracing isn’t turned on until after that com-
mand completes. Similarly, the set +x is traced, since tracing isn’t turned off until
after it completes. The final echo isn’t traced, since tracing is turned off at that point.

2.8 Internationalization and Localization

Writing software for an international audience is a challenging problem. The task is
usually divided into two parts: internationalization (i18n for short, since that long
word has 18 letters between the first and last), and localization (similarly abbrevi-
ated [10n).

Internationalization is the process of designing software so that it can be adapted for
specific user communities without having to change or recompile the code. At a min-
imum, this means that all character strings must be wrapped in library calls that han-
dle runtime lookup of suitable translations in message catalogs. Typically, the
translations are specified in ordinary text files that accompany the software, and then
are compiled by gencat or msgfmt into compact binary files organized for fast lookup.
The compiled message catalogs are then installed in a system-specific directory tree,
such as the GNU conventional /usr/share/locale and /usr/local/share/locale, or
on commercial Unix systems, /usr/1ib/nls or /usr/1lib/locale. Details can be found
in the manual pages for setlocale(3), catgets(3C), and gettext(3C).

Localization is the process of adapting internationalized software for use by specific
user communities. This may require translating software documentation, and all text
strings output by the software, and possibly changing the formats of currency, dates,
numbers, times, units of measurement, and so on, in program output. The character
set used for text may also have to be changed, unless the universal Unicode character

2.8 Internationalization and Localization | 25

set can be used, and different fonts may be required. For some languages, the writ-
ing direction has to be changed as well.

In the Unix world, ISO programming language standards and POSIX have intro-
duced limited support for addressing these problems, but much remains to be done,
and progress varies substantially across the various flavors of Unix. For the user, the
feature that controls which language or cultural environment is in effect is called the
locale, and it is set by one or more of the environment variables shown in Table 2-3.

Table 2-3. Locale environment variables

Name Description

LANG Default value forany LC_xxx variable that is not otherwise set

LC ALL Value that overrides all other LC_xxx variables

LC_COLLATE Locale name for collation (sorting)

LC_CTYPE Locale name for character types (alphabetic, digit, punctuation, and so on)
LC_MESSAGES Locale name for affirmative and negative responses and for messages; POSIX only
LC_MONETARY Locale name for currency formatting

LC_NUMERIC Locale name for number formatting

LC_TIME Locale name for date and time formatting

In general, you set LC_ALL to force a single locale, and you set LANG to provide a fall-
back locale. In most cases, you should avoid setting any of the other LC xxx vari-
ables. For example, although it might appear to be more precise to set LC_COLLATE
when you use the sort command, that setting might conflict with a setting of LC_
CTYPE, or be ignored entirely if LC_ALL is set.

Only a single standard locale name, C, is prescribed by the ISO C and C++ stan-
dards: it selects traditional ASCII-oriented behavior. POSIX specifies one additional
locale name, POSIX, which is equivalent to C.

Apart from the names C and POSIX, locale names are not standardized. However,
most vendors have adopted similar, but not identical, naming conventions. The
locale name encodes a language, a territory, and optionally, a codeset and a modi-
fier. It is normally represented by a lowercase two-letter ISO 639 language code,” an
underscore, and an uppercase two-letter ISO 3166-1 country code, optionally fol-
lowed by a dot and the character-set encoding, and an at-sign and a modifier word.
Language names are sometimes used as well. You can list all of the recognized locale
names on your system like this:

$ locale -a List all locales

francais
fr BE

* Available at http://'www.ics.uci.edu/publietf/http/related/iso639.txt.
T Available at http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

26 | Chapter2: Getting Started

fr_BE@euro

fr BE.is088591

fr BE.1s0885915@euro
fr_BE.utf8

fr BE.utf8@euro
fr CA

fr CA.is088591

fr CA.utf8

french

You can query the details of a particular locale variable by defining a locale in the
environment (here, as a prefix to the command) and running the locale command
with the -ck option and an LC_xxx variable. Here is an example from a Sun Solaris
system that reports information about the Danish time locale:

$ LC_ALL=da locale -ck LC_TIME Get locale information for Danish time
LC_TIME

d_t_fmt="%a %d %b %Y %T %7"

d_fmt="%d-%m-%y"

t_fmt="%T"

t_fmt_ampm="%I:%M:%S %p"

am_pm="AM";"PM"

day="s¢ndag"; "mandag";"tirsdag";"onsdag";"torsdag";"fredag";"lerdag"

abday="sgn";"man";"tir";"ons";"tor";"fre";"lor"

mon="januar";"februar";"marts";"april”;"maj";"juni";"juli";"august"; \

"september";"oktober";"november";"december"
abmon="jan";"feb";"mar";"apr";"maj";"jun";"jul";"aug";"sep"; "okt"; \
"nov";"dec"

era=""
era d fmt=""
era d t fmt=""
era_t_fmt=""
alt_digits=""

The number of available locales varies widely. A survey of about 20 flavors of Unix
found none at all on BSD systems (they lack the locale command), as few as five
on some systems, and almost 500 on recent GNU/Linux releases. Locale support
may be an installation option at the discretion of the system manager, so even the
same operating system release on two similar machines may have differing locale
support. We found filesystem requirements for locale support approaching 300MB*
on some systems.

* MB = megabyte, approximately 1 million bytes, where one byte is now conventionally eight bits (binary dig-
its), although both larger and smaller byte sizes have been used in the past. Despite the metric prefix, in com-
puter use, M usually means 220 = 1,048,576.

A handy rule of thumb is that one megabyte is about the amount of text in a book (300 pages x 60 lines/page
% 60 characters/line = 1,080,000 characters).

2.8 Internationalization and Localization | 27

Several GNU packages have been internationalized, and localization support has
been added for many locales. For example, in an Italian locale, GNU 1s offers help

like this:

$ LC_ALL=it_IT 1s --help Get help for GNU Is in Italian

Uso: 1s [OPZIONE]... [FILE]...

Elenca informazioni sui FILE (predefinito: la directory corrente).

Ordina alfabeticamente le voci se non & usato uno di -cftuSUX oppure --sort.

Mandatory arguments to long options are mandatory for short options too.

-a, --all non nasconde le voci che iniziano con .
-A, --almost-all non elenca le voci implicite . e ..
--author stampa 1'autore di ogni file
-b, --escape stampa escape ottali per i caratteri non grafici

--block-size=DIMENS usa blocchi lunghi DIMENS byte

Notice that when a translation is unavailable (fifth output line), the fallback is to the
original language, English. Program names and option names are not translated,
because that would destroy software portability.

There is currently little support on most systems for the shell programmer to address
the issues of internationalization and localization. However, shell scripts are often
affected by locales, notably in collation order, and in bracket-expression character
ranges in regular expressions. Although we describe character classes, collating sym-
bols, and equivalence classes in “What Is a Regular Expression?” [3.2.1], it appears
to be quite difficult on most Unix systems to determine from locale documentation
or tools exactly what characters are members of the character and equivalence
classes, and what collating symbols are available. This reflects the immaturity of
locale support on current systems.

When the GNU gettext package” is installed, it is possible to use it to support the
internationalization and localization of shell scripts. This is an advanced topic that
we do not cover in this book, but you can find the details in the Preparing Shell
Scripts for Internationalization section of the gettext manual.

The wide variations in locale support, and the lack of standardized locale names,
make it hard to do much with locales in portable shell scripts, other than force the
traditional locale by setting LC_ALL to C. We do that in some of the scripts in this
book when locale dependence could otherwise produce unexpected results.

2.9 Summary

The choice of compiled language versus scripting language is usually made based on
the need of the application. Scripting languages generally work at a higher level than
compiled languages, and the loss in performance is often more than made up for by

* Available at ftp:/ftp.gnu.org/gnu/gettext/.

28 | Chapter2: Getting Started

the speed with which development can be done and the ability to work at a higher
level.

The shell is one of the most important and widely used scripting languages in the
Unix environment. Because it is ubiquitous, and because of the POSIX standard, it is
possible to write shell programs that will work on many different vendor platforms.
Because the shell functions at a high level, shell programs have a lot of bang for the
buck; you can do a lot with relatively little work.

The #! first line should be used for all shell scripts; this mechanism provides you
with flexibility, and the ability to write scripts in your choice of shell or other lan-
guage.

The shell is a full programming language. So far we covered the basics of com-
mands, options, arguments, and variables, and basic output with echo and printf.
We also looked at the basic I/O redirection operators, <, >, >>, and |, with which we
expect you're really already familiar.

The shell looks for commands in each directory in $PATH. It’s common to have a per-
sonal bin directory in which to store your own private programs and scripts, and to
list it in PATH by doing an assignment in your .profile file.

We looked at the basics of accessing command-line arguments and simple execution
tracing.

Finally, we discussed internationalization and localization, topics that are growing in
importance as computer systems are adapted to the computing needs of more of the
world’s people. While support in this area for shell scripts is still limited, shell pro-
grammers need to be aware of the influence of locales on their code.

2.9 Summary | 29

CHAPTER 3
Searching and Substitutions

As we discussed in “Software Tools Principles” [1.2], Unix programmers prefer to
work on lines of text. Textual data is more flexible than binary data, and Unix sys-
tems provide a number of tools that make slicing and dicing text easy.

In this chapter, we look at two fundamental operations that show up repeatedly in
shell scripting: text searching—looking for specific lines of text—and text substitu-
tion—changing the text that is found.

While you can accomplish many things by using simple constant text strings, regu-
lar expressions provide a much more powerful notation for matching many different
actual text fragments with a single expression. This chapter introduces the two regu-
lar expression “flavors” provided by various Unix programs, and then proceeds to
cover the most important tools for text extraction and rearranging.

3.1 Searching for Text

The workhorse program for finding text (or “matching text,” in Unix jargon) is grep.
On POSIX systems, grep can use either of the two regular expression flavors, or
match simple strings.

Traditionally, there were three separate programs for searching through text files:

grep
The original text-matching program. It uses Basic Regular Expressions (BREs) as
defined by POSIX, and as we describe later in the chapter.

egrep
“Extended grep.” This program uses Extended Regular Expressions (EREs),
which are a more powerful regular expression notation. The cost of EREs is that
they can be more computationally expensive to use. On the original PDP-11s
this was important; on modern systems, there is little difference.

30

fgrep
“Fast grep.” This variant matches fixed strings instead of regular expressions
using an algorithm optimized for fixed-string matching. The original version was
also the only variant that could match multiple strings in parallel. In other
words, grep and egrep could match only a single regular expression, whereas
fgrep used a different algorithm that could match multiple strings, effectively
testing each input line for a match against all the requested search strings.

The 1992 POSIX standard merged all three variants into one grep program whose
behavior is controlled by different options. The POSIX version can match multiple
patterns, even for BREs and EREs. Both fgrep and egrep were also available, but they
were marked as “deprecated,” meaning that they would be removed from a subse-
quent standard. And indeed, the 2001 POSIX standard only includes the merged
grep command. However, in practice, both egrep and fgrep continue to be available
on all Unix and Unix-like systems.

3.1.1 Simple grep

The simplest use of grep is with constant strings:

$ who Who is logged on
tolstoy tty1 Feb 26 10:53

tolstoy pts/0 Feb 29 10:59

tolstoy pts/1 Feb 29 10:59

tolstoy pts/2 Feb 29 11:00

tolstoy pts/3 Feb 29 11:00

tolstoy pts/4 Feb 29 11:00

austen pts/s Feb 29 15:39 (mansfield-park.example.com)
austen pts/6 Feb 29 15:39 (mansfield-park.example.com)

$ who | grep -F austen Where is austen logged on?
austen pts/s Feb 29 15:39 (mansfield-park.example.com)
austen pts/6 Feb 29 15:39 (mansfield-park.example.com)

This example used the -F option, to search for the fixed string austen. And in fact, as
long as your pattern doesn’t contain any regular expression metacharacters, grep’s
default behavior is effectively the same as if you’d used the -F option:

$ who | grep austen No -F, same result
austen pts/s Feb 29 15:39 (mansfield-park.example.com)
austen pts/6 Feb 29 15:39 (mansfield-park.example.com)

3.2 Regular Expressions

This section provides a brief review of regular expression construction and match-
ing. In particular, it describes the POSIX BRE and ERE constructs, which are
intended to formalize the two basic “flavors” of regular expressions found among
most Unix utilities.

3.2 Regular Expressions | 31

grep
Usage
grep [options ...] pattern-spec [files ...]
Purpose
To print lines of text that match one or more patterns. This is often the first stage
in a pipeline that does further processing on matched data.
Major options
-E
Match using extended regular expressions. grep -E replaces the traditional
egrep command.
-F
Match using fixed strings. grep -F replaces the traditional fgrep command.
-e pat-list
Usually, the first nonoption argument specifies the pattern(s) to match. Mul-
tiple patterns can be supplied by quoting them and separating them with
newlines. In the case that the pattern starts with a minus sign, grep could get
confused and treat it as an option. The -e option specifies that its argument
is a pattern, even if it starts with a minus sign.
-f pat-file
Read patterns from the file pat-file.

Ignore lettercase when doing pattern matching.

List the names of files that match the pattern instead of printing the matching
lines.

Be quiet. Instead of writing lines to standard output, grep exits successfully if
it matches the pattern, unsuccessfully otherwise. (We haven’t discussed suc-
cess/nonsuccess yet; see “Exit Statuses” [6.2].)

Suppress error messages. This is often used together with -q.

Print lines that don’t match the pattern.
Behavior
Read through each file named on the command line. When a line matches the pat-
tern being searched for, print the line. When multiple files are named, grep pre-
cedes each line with the filename and a colon. The default is to use BREs.
Caveats
You can use multiple -e and -f options to build up a list of patterns to search for.

32

| Chapter3: Searching and Substitutions

We expect that you’ve had some exposure to regular expressions and text matching
prior to this book. In that case, these subsections summarize how you can expect to
use regular expressions for portable shell scripting.

If you’ve had no exposure at all to regular expressions, the material here may be a lit-
tle too condensed for you, and you should detour to a more introductory source,
such as Learning the Unix Operating System (O’Reilly) or sed & awk (O’Reilly). Since
regular expressions are a fundamental part of the Unix tool-using and tool-building
paradigms, any investment you make in learning how to use them, and use them
well, will be amply rewarded, multifold, time after time.

If, on the other hand, you've been chopping, slicing, and dicing text with regular
expressions for years, you may find our coverage cursory. If such is the case, we rec-
ommend that you review the first part, which summarizes POSIX BREs and EREs in
tabular form, skip the rest of the section, and move on to a more in-depth source,
such as Mastering Regular Expressions (O’Reilly).

3.2.1 WhatIs a Regular Expression?

Regular expressions are a notation that lets you search for text that fits a particular
criterion, such as “starts with the letter a.” The notation lets you write a single
expression that can select, or match, multiple data strings.

Above and beyond traditional Unix regular expression notation, POSIX regular
expressions let you:

* Write regular expressions that express locale-specific character sequence order-
ings and equivalences

* Write your regular expressions in a way that does not depend upon the underly-
ing character set of the system

A large number of Unix utilities derive their power from regular expressions of one
form or another. A partial list includes the following:

* The grep family of tools for finding matching lines of text: grep and egrep, which
are always available, as well as the nonstandard but useful agrep utility”

* The sed stream editor, for making changes to an input stream, described later in
the chapter

* String processing languages, such as awk, Icon, Perl, Python, Ruby, Tcl, and
others

* The original Unix version from 1992 is at ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z. A current version
for Windows systems is at http://www.tgries.de/agrep/337/agrep337.zip. Unlike most downloadable software
that we cite in this book, agrep is not freely usable for any arbitrary purpose; see the permissions files that
come with the program.

3.2 Regular Expressions | 33

* File viewers (sometimes called pagers), such as more, page, and pg, which are
common on commercial Unix systems, and the popular less pager’

* Text editors, such as the venerable ed line editor, the standard vi screen editor,
and popular add-on editors such as emacs, jed, jove, vile, vim, and others

Because regular expressions are so central to Unix use, it pays to master them, and
the earlier you do so, the better off you’ll be.

In terms of the nuts and bolts, regular expressions are built from two basic compo-
nents: ordinary characters and special characters. An ordinary character is any char-
acter that isn’t special, as defined in the following table. In some contexts even
special characters are treated as ordinary characters. Special characters are often
called metacharacters, a term that we use throughout the rest of this chapter.
Table 3-1 lists the POSIX BRE and ERE metacharacters.

Table 3-1. POSIX BRE and ERE metacharacters

Character BRE / ERE Meaning in a pattern
\ Both Usually, turn off the special meaning of the following character. Occasionally, enable a
special meaning for the following character, such as for \ (...\) and \{...\}.
Both Match any single character except NUL. Individual programs may also disallow match-
ing newline.
* Both Match any number (or none) of the single character that immediately precedes it. For EREs,

the preceding character can instead be a regular expression. For example, since . (dot)
means any character, . * means “match any number of any character.” For BREs, * is not
spedial if it's the first character of a regular expression.

n Both Match the following regular expression at the beginning of the line or string. BRE: spe-
cial only at the beginning of a reqular expression. ERE: special everywhere.

$ Both Match the preceding regular expression at the end of the line or string. BRE: special only
at the end of a reqular expression. ERE: special everywhere.

[...] Both Termed a bracket expression, this matches any one of the enclosed characters. A
hyphen (-) indicates a range of consecutive characters. (Caution: ranges are locale-sen-
sitive, and thus not portable.) A circumflex (*) as the first character in the brackets
reverses the sense: it matches any one character not in the list. A hyphen or close
bracket (]) as the first character is treated as a member of the list. All other metacharac-
ters are treated as members of the list (i.e., literally). Bracket expressions may contain
collating symbols, equivalence classes, and character classes (described shortly).

\{nm\} ERE Termed an interval expression, this matches a range of occurrences of the single
character that immediately precedes it. \{n\ } matches exactly n occurrences, \{n, \
} matches at least n occurrences, and \{n,m\ } matches any number of occurrences
between n and m. n and m must be between 0 and RE_DUP_MAX (minimum value:
255), inclusive.

* So named as a pun on more. See ftp://ftp.gnu.org/gnu/less/.

34 | Chapter3: Searching and Substitutions

Table 3-1. POSIX BRE and ERE metacharacters (continued)

Character BRE/ ERE Meaning in a pattern

\(\) BRE Save the pattern enclosed between \ ('and \) in a special holding space. Up to
nine subpatterns can be saved on a single pattern. The text matched by the subpat-
terns can be reused later in the same pattern, by the escape sequences \1 to \9. For
example, \ (ab\) . *\1 matches two occurrences of ab, with any number of charac-
tersin between.

\n BRE Replay the nth subpattern enclosed in \ (and \) into the pattern at this point. nisa
number from 1to 9, with 1 starting on the left.

{nm} ERE Just like the BRE \{n,m\ } earlier, but without the backslashes in front of the braces.

+ ERE Match one or more instances of the preceding reqular expression.

? ERE Match zero or one instances of the preceding regular expression.

| ERE Match the regular expression specified before or after.

() ERE Apply a match to the enclosed group of regular expressions.

Table 3-2 presents some simple examples.

Table 3-2. Simple regular expression matching examples

Expression Matches

tolstoy The seven letters tolstoy, anywhere on a line

~tolstoy The seven letters tolstoy, at the beginning of a line

tolstoy$ The seven letters tolstoy, at the end of a line

~tolstoy$ Aline containing exactly the seven letters tolstoy, and nothing else

[Tt]olstoy Either the seven letters Tolstoy, or the seven letters tolstoy, anywhere on aline

tol.toy The three letters tol, any character, and the three letters toy, anywhere on a line

tol.*toy The three letters to1, any sequence of zero or more characters, and the three letters toy, anywhere

onaline (e.g., toltoy, tolstoy, tolWHOtoy, and so on)

3.2.1.1 POSIX bracket expressions

In order to accommodate non-English environments, the POSIX standard enhanced
the ability of character set ranges (e.g., [a-z]) to match characters not in the English
alphabet. For example, the French & is an alphabetic character, but the typical char-
acter class [a-z] would not match it. Additionally, the standard provides for
sequences of characters that should be treated as a single unit when matching and
collating (sorting) string data. (For example, there are locales where the two charac-
ters ch are treated as a unit, and must be matched and sorted that way.) The growing
popularity of the Unicode character set standard adds further complications to the
use of simple ranges, making them even less appropriate for modern applications.

POSIX also changed what had been common terminology. What we saw earlier as a
range expression is often called a “character class” in the Unix literature. It is now
called a bracket expression in the POSIX standard. Within “bracket expressions,”

3.2 Regular Expressions | 35

besides literal characters such as z, ;, and so on, you can have additional compo-
nents. These are:

Character classes
A POSIX character class consists of keywords bracketed by [: and :]. The key-
words describe different classes of characters such as alphabetic characters, con-
trol characters, and so on. See Table 3-3.

Collating symbols
A collating symbol is a multicharacter sequence that should be treated as a unit.
It consists of the characters bracketed by [. and .]. Collating symbols are spe-
cific to the locale in which they are used.

Equivalence classes
An equivalence class lists a set of characters that should be considered equiva-
lent, such as e and é. It consists of a named element from the locale, bracketed

by [=and =].

All three of these constructs must appear inside the square brackets of a bracket
expression. For example, [[:alpha:]!] matches any single alphabetic character or
the exclamation mark, and [[.ch.]] matches the collating element ch, but does not
match just the letter c or the letter h. In a French locale, [[=e=]] might match any of
e, &, &, &, or é. We provide more information on character classes, collating symbols,
and equivalence classes shortly.

Table 3-3 describes the POSIX character classes.

Table 3-3. POSIX character classes

Class Matching characters Class Matching characters
[:alnum:] Alphanumeric characters [:lower:] Lowercase characters
[:alpha:] Alphabetic characters [:print:] Printable characters
[:blank:] Space and tab characters [:punct:] Punctuation characters
[:entrl:] Control characters [:space:] Whitespace characters
[:digit:] Numeric characters [:upper:] Uppercase characters
[:graph:] Nonspace characters [:xdigit:] Hexadecimal digits

BREs and EREs share some common characteristics, but also have some important
differences. We’ll start by explaining BREs, and then we’ll explain the additional
metacharacters in EREs, as well as the cases where the same (or similar) metacharac-
ters are used but have different semantics (meaning).

36 | Chapter3: Searchingand Substitutions

3.2.2 BasicRegular Expressions

BREs are built up of multiple components, starting with several ways to match sin-
gle characters, and then combining those with additional metacharacters for match-
ing multiple characters.

3.2.2.1 Matching single characters

The first operation is to match a single character. This can be done in several ways:
with ordinary characters; with an escaped metacharacter; with the . (dot) metachar-
acter; or with a bracket expression:

* Ordinary characters are those not listed in Table 3-1. These include all alphanu-
meric characters, most whitespace characters, and most punctuation characters.
Thus, the regular expression a matches the character a. We say that ordinary
characters stand for themselves, and this usage should be pretty straightforward
and obvious. Thus, shell matches shell, WoRd matches WoRd but not word, and so
on.

* If metacharacters don’t stand for themselves, how do you match one when you
need to? The answer is by escaping it. This is done by preceding it with a back-
slash. Thus, * matches a literal *, \\ matches a single literal backslash, and \[
matches a left bracket. (If you put a backslash in front of an ordinary character,
the POSIX standard leaves the behavior as explicitly undefined. Typically, the
backslash is ignored, but it’s poor practice to do something like that.)

* The . (dot) character means “any single character.” Thus, a.c matches all of abc,
aac, aqc, and so on. The single dot by itself is only occasionally useful. It is much
more often used together with other metacharacters that allow the combination
to match multiple characters, as described shortly.

* The last way to match a single character is with a bracket expression. The sim-
plest form of a bracket expression is to enclose a list of characters between
square brackets, such as [aeiouy], which matches any lowercase English vowel.
For example, c[aeiouy]t matches cat, cot, and cut (as well as cet, cit, and cyt),
but won’t match cbt.

Supplying a caret (*) as the first character in the bracket expression comple-
ments the set of characters that are matched; such a complemented set matches
any character not in the bracketed list. Thus, [*aeiouy] matches anything that
isn’t a lowercase vowel, including the uppercase vowels, all consonants, digits,
punctuation, and so on.

Matching lots of characters by listing them all gets tedious—for example,
[0123456789] to match a digit or [0123456789abcdefABCDEF] to match a hexadecimal
digit. For this reason, bracket expressions may include ranges of characters. The pre-
vious two expressions can be shortened to [0-9] and [0-9a-fA-F], respectively.

3.2 Regular Expressions | 37

Originally, the range notation matched characters based on their

“Eﬂ@ numeric values in the machine’s character set. Because of character set
differences (ASCII versus EBCDIC), this notation was never 100 per-
cent portable, although in practice it was “good enough,” since almost
all Unix systems used ASCII.

With POSIX locales, things have gotten worse. Ranges now work
based on each character’s defined position in the locale’s collating
sequence, which is unrelated to machine character-set numeric values.
Therefore, the range notation is portable only for programs running in
the "POSIX" locale. The POSIX character class notation, mentioned
earlier in the chapter, provides a way to portably express concepts
such as “all the digits,” or “all alphabetic characters.” Thus, ranges in
bracket expressions are discouraged in new programs.

Earlier, in “What Is a Regular Expression?” [3.2.1], we briefly mentioned POSIX col-
lating symbols, equivalence classes, and character classes. These are the final compo-
nents that may appear inside the square brackets of a bracket expression. The
following paragraphs explain each of these constructs.

In several non-English languages, certain pairs of characters must be treated, for
comparison purposes, as if they were a single character. Such pairs have a defined
way of sorting when compared with single letters in the language. For example, in
Czech and Spanish, the two characters ch are kept together and are treated as a sin-
gle unit for comparison purposes.

Collating is the act of giving an ordering to some group or set of items. A POSIX col-
lating element consists of the name of the element in the current locale, enclosed by
[. and .]. For the ch just discussed, the locale might use [.ch.]. (We say “might”
because each locale defines its own collating elements.) Assuming the existence of
[.ch.], the regular expression [ab[.ch.]de] matches any of the characters a, b, d, or
e, or the pair ch. It does not match a standalone c or h character.

An equivalence class is used to represent different characters that should be treated
the same when matching. Equivalence classes enclose the name of the class between
[=and =]. For example, in a French locale, there might be an [=e=] equivalence class.
If it exists, then the regular expression [a[=e=]iouy] would match all the lowercase
English vowels, as well as the letters &, &, and so on.

As the last special component, character classes represent classes of characters, such
as digits, lower- and uppercase letters, punctuation, whitespace, and so on. They are
written by enclosing the name of the class in [: and :]. The full list was shown ear-
lier, in Table 3-3. The pre-POSIX range expressions for decimal and hexadecimal dig-
its can (and should) be expressed portably, by using character classes: [[:digit:]] and
[[:xdigit:]].

38 | Chapter3: Searching and Substitutions

N N

Collating elements, equivalence classes, and character classes are only
recognized inside the square brackets of a bracket expression. Writing
Wi a standalone regular expression such as [:alpha:] matches the charac-
" tersa, 1,p, h,and :. The correct way to write it is [[:alpha:]].

Within bracket expressions, all other metacharacters lose their special meanings.
Thus, [*\.] matches a literal asterisk, a literal backslash, or a literal period. To get a
] into the set, place it first in the list: []*\.] adds the] to the list. To get a minus
character into the set, place it first in the list: [-*\.]. If you need both a right bracket
and a minus, make the right bracket the first character, and make the minus the last
one in the list: []*\.-].

Finally, POSIX explicitly states that the NUL character (numeric value zero) need not
be matchable. This character is used in the C language to indicate the end of a string,
and the POSIX standard wanted to make it straightforward to implement its features
using regular C strings. In addition, individual utilities may disallow matching of the
newline character by the . (dot) metacharacter or by bracket expressions.

3.2.2.2 Backreferences

BREs provide a mechanism, known as backreferences, for saying “match whatever an
earlier part of the regular expression matched.” There are two steps to using backref-
erences. The first step is to enclose a subexpression in \(and \). There may be up to
nine enclosed subexpressions within a single pattern, and they may be nested.

The next step is to use \digit, where digit is a number between 1 and 9, in a later
part of the same pattern. Its meaning there is “match whatever was matched by the
nth earlier parenthesized subexpression.” Here are some examples:

Pattern Matches

\(ab\)\(cd\)[def]*\2\1 abcdcdab, abcdeeecdab, abcdddeeffcdab, ...
\(why\).*\1 Aline with two occurrences of why
\([[:alpha:]_][[:alnum:]_]*\) = \1; Simple C/C++ assignment statement

Backreferences are particularly useful for finding duplicated words and matching
quotes:

NI RaY! Match single- or double-quoted words, like 'foo' or "bar"

This way, you don’t have to worry about whether a single quote or double quote was
found first.

3.2 Regular Expressions | 39

3.2.2.3 Matching multiple characters with one expression

The simplest way to match multiple characters is to list them one after the other
(concatenation). Thus, the regular expression ab matches the characters ab, .. (dot
dot) matches any two characters, and [[:upper:]][[:lower:]] matches any upper-
case character followed by any lowercase one. However, listing characters out this
way is good only for short regular expressions.

Although the . (dot) metacharacter and bracket expressions provide a nice way to
match one character at a time, the real power of regular expressions comes into play
when using the additional modifier metacharacters. These metacharacters come after
a single-character regular expression, and they modify the meaning of the regular
expression.

The most commonly used modifier is the asterisk or star (*), whose meaning is
“match zero or more of the preceding single character.” Thus, ab*c means “match an
a, zero or more b characters, and a c.” This regular expression matches ac, abc, abbc,
abbbc, and so on.

W N

It is important to understand that “match zero or more of one thing”

.“:‘ does not mean “match one of something else.” Thus, given the regular

TGl expression ab*c, the text aQc does not match, even though there are
zero b characters in aQc. Instead, with the text ac, the b* in ab*c is said
to match the null string (the string of zero width) in between the a and
the c. (The idea of a zero-width string takes some getting used to if
you’ve never seen it before. Nevertheless, it does come in handy, as
will be shown later in the chapter.)

The * modifier is useful, but it is unlimited. You can’t use * to say “match three char-
acters but not four,” and it’s tedious to have to type out a complicated bracket
expression multiple times when you want an exact number of matches. Interval
expressions solve this problem. Like *, they come after a single-character regular
expression, and they let you control how many repetitions of that character will be
matched. Interval expressions consist of one or two numbers enclosed between \{
and \}. There are three variants, as follows:

\{n\} Exactly n occurrences of the preceding regular expression
\{n, \} At least n occurrences of the preceding regular expression
\{n,m\} Between 1 and m occurrences of the preceding regular expression

Given interval expressions, it becomes easy to express things like “exactly five occur-
rences of a,” or “between 10 and 42 instances of q.” To wit: a\{5\} and q\{10,42\}.

The values for n and m must be between 0 and RE_DUP_MAX, inclusive. RE_DUP_MAX is a
symbolic constant defined by POSIX and available via the getconf command. The

40 | Chapter3: Searchingand Substitutions

minimum value for RE_DUP_MAX is 255; some systems allow larger values. On one of
our GNU/Linux systems, it’s quite large:

$ getconf RE_DUP_MAX
32767

3.2.2.4 Anchoring text matches

Two additional metacharacters round out our discussion of BREs. These are the
caret (%) and the dollar sign ($). These characters are called anchors because they
restrict the regular expression to matching at the beginning or end, respectively, of
the string being matched against. (This use of * is entirely separate from the use of
to complement the list of characters inside a bracket expression.) Assuming that the
text to be matched is abcABCdefDEF, Table 3-4 provides some examples:

Table 3-4. Examples of anchors in regular expressions

Pattern Matches? Text matched (in bold) / Reason match fails

ABC Yes Characters 4, 5, and 6, in the middle: abcABCdefDEF
~ABC No Match is restricted to beginning of string

def Yes Characters 7,8,and 9, in the middle: abcABCdefDEF
def$ No Match is restricted to end of string
[[:upper:1]1\{3\} Yes Characters 4, 5, and 6, in the middle: abcABCdefDEF
[[:upper:1]\{3\}$ Yes Characters 10, 11, and 12, at the end: abcDEFde fDEF
A [:alpha:]]\{3\} Yes Characters 1, 2, and 3, at the beginning: abcABCdefDEF

~ and $ may be used together, in which case the enclosed regular expression must
match the entire string (or line). It is also useful occasionally to use the simple regu-
lar expression *$, which matches empty strings or lines. Together with the -v option
to grep, which prints all lines that don’t match a pattern, these can be used to filter
out empty lines from a file.

For example, it’s sometimes useful to look at C source code after it has been pro-
cessed for #include files and #define macros so that you can see exactly what the C
compiler sees. (This is low-level debugging, but sometimes it’s what you have to do.)
Expanded files often contain many more blank or empty lines than lines of source
text: thus it’s useful to exclude empty lines:

$ cc -E foo.c | grep -v '~$' > foo.out Preprocess, remove empty lines

~ and $ are special only at the beginning or end of a BRE, respectively. In a BRE such
as ab”cd, the » stands for itself. So too in ef$gh, the $ in this case stands for itself.
And, as with any other metacharacter, * and \$ may be used, as may [$]."

* The corresponding [*] is not a valid regular expression. Make sure you understand why.

3.2 Regular Expressions | 41

3.2.2.5 BRE operator precedence

As in mathematical expressions, the regular expression operators have a certain
defined precedence. This means that certain operators are applied before (have higher
precedence than) other operators. Table 3-5 provides the precedence for the BRE
operators, from highest to lowest.

Table 3-5. BRE operator precedence from highest to lowest

Operator Meaning

[..7[==]1[::] Bracket symbols for character collation

\metacharacter Escaped metacharacters

[] Bracket expressions

\(\) \digit Subexpressions and backreferences

* A\{\} Repetition of the preceding single-character regular expression
no symbol Concatenation

~$ Anchors

3.2.3 Extended Regular Expressions

EREs, as the name implies, have more capabilities than do basic regular expressions.
Many of the metacharacters and capabilities are identical. However, some of the
metacharacters that look similar to their BRE counterparts have different meanings.

3.2.3.1 Matching single characters

When it comes to matching single characters, EREs are essentially the same as BREs.
In particular, normal characters, the backslash character for escaping metacharac-
ters, and bracket expressions all behave as described earlier for BREs.

One notable exception is that in awk, \ is special inside bracket expressions. Thus, to
match a left bracket, dash, right bracket, or backslash, you could use [\[\-\]\\].
Again, this reflects historical practice.

3.2.3.2 Backreferences don’t exist

Backreferences don’t exist in EREs.” Parentheses are special in EREs, but serve a dif-
ferent purpose than they do in BREs (to be described shortly). In an ERE, \(and \)
match literal left and right parentheses.

* This reflects differences in the historical behavior of the grep and egrep commands, not a technical incapa-
bility of regular expression matchers. Such is life with Unix.

42 | Chapter3: Searching and Substitutions

3.2.3.3 Matching multiple reqular expressions with one expression

EREs have the most notable differences from BREs in the area of matching multiple
characters. The * does work the same as in BREs."

Interval expressions are also available in EREs; however, they are written using plain
braces, not braces preceded by backslashes. Thus, our previous examples of “exactly
five occurrences of a” and “between 10 and 42 instances of gq” are written a{5} and
q{10,42}, respectively. Use \{ and \} to match literal brace characters. POSIX pur-
posely leaves the meaning of a { without a matching } in an ERE as “undefined.”

EREs have two additional metacharacters for finer-grained matching control, as
follows:

? Match zero or one of the preceding regular expression

+ Match one or more of the preceding regular expression

You can think of the ? character as meaning “optional.” In other words, text match-
ing the preceding regular expression is either present or it’s not. For example, ab?c
matches both ac and abc, but nothing else. (Compare this to ab*c, which can match
any number of intermediate b characters.)

The + character is conceptually similar to the * metacharacter, except that at least
one occurrence of text matching the preceding regular expression must be present.
Thus, ab+c matches abc, abbc, abbbc, and so on, but does not match ac. You can
always replace a regular expression of the form ab+c with abb*c; however, the + can
save a lot of typing (and the potential for typos!) when the preceding regular expres-
sion is complicated.

3.2.3.4 Alternation

Bracket expressions let you easily say “match this character, or that character, or”
However, they don’t let you specify “match this sequence, or that sequence, or”
You can do this using the alternation operator, which is the vertical bar or pipe char-
acter (]). Simply write the two sequences of characters, separated by a pipe. For
example, read|write matches both read and write, fast|slow matches both fast and
slow, and so on. You may use more than one: sleep|doze|dream|nod off|slumber
matches all five expressions.

The | character has the lowest precedence of all the ERE operators. Thus, the left-
hand side extends all the way to the left of the operator, to either a preceding | char-
acter or the beginning of the regular expression. Similarly, the righthand side of the |
extends all the way to the right of the operator, to either a succeeding | character or

* An exception is that the meaning of a * as the first character of an ERE is “undefined,” whereas in a BRE it
means “match a literal *.”

3.2 Regular Expressions | 43

the end of the whole regular expression. The implications of this are discussed in the
next section.

3.2.3.5 Grouping

You may have noticed that for EREs, we’ve stated that the operators are applied to
“the preceding regular expression.” The reason is that parentheses ((...)) provide
grouping, to which the operators may then be applied. For example, (why)+ matches
one or more occurrences of the word why.

Grouping is particularly valuable (and necessary) when using alternation. It allows
you to build complicated and flexible regular expressions. For example, [Tt]he
(CPU| computer) is matches sentences using either CPU or computer in between The (or
the) and is. Note that here the parentheses are metacharacters, not input text to be
matched.

Grouping is also often necessary when using a repetition operator together with
alternation. read|write+ matches exactly one occurrence of the word read or an
occurrence of the word write, followed by any number of e characters (writee,
writeee, and so on). A more useful pattern (and probably what would be meant) is
(read|write)+, which matches one or more occurrences of either of the words read
or write.

Of course, (read|write)+ makes no allowance for intervening whitespace between
words. ((read|write)[[:space:]]*)+ is a more complicated, but more realistic, regu-
lar expression. At first glance, this looks rather opaque. However, if you break it
down into its component parts, from the outside in, it’s not too hard to follow. This
is illustrated in Figure 3-1.

(something1)+ One or more repetitions of something1

(something2) [[:space:]]* somethingiissomething2,possibly followed
by space characters

read|write something2 is eitherread” or“write”

Figure 3-1. Reading a complicated regular expression

The upshot is that this single regular expression matches multiple successive occur-
rences of either read or write, possibly separated by whitespace characters.

The use of a * after the [[:space:]] is something of a judgment call. By using a * and
not a +, the match gets words at the end of a line (or string). However, this opens up
the possibility of matching words with no intervening whitespace at all. Crafting reg-

44 | Chapter3: Searching and Substitutions

ular expressions often requires such judgment calls. How you build your regular
expressions will depend on both your input data and what you need to do with that
data.

Finally, grouping is helpful when using alternation together with the » and $ anchor
characters. Because | has the lowest precedence of all the operators, the regular
expression “abcd|efgh$ means “match abcd at the beginning of the string, or match
efgh at the end of the string.” This is different from ~(abcd|efgh)$, which means
“match a string containing exactly abcd or exactly efgh.”

3.2.3.6 Anchoring text matches

The » and $ have the same meaning as in BREs: anchor the regular expression to the
beginning or end of the text string (or line). There is one significant difference,
though. In EREs, » and $ are always metacharacters. Thus, regular expressions such
as ab”cd and ef$gh are valid, but cannot match anything, since the text preceding the
~ and the text following the $ prevent them from matching “the beginning of the
string” and “the end of the string,” respectively. As with the other metacharacters,
they do lose their special meaning inside bracket expressions.

3.2.3.7 ERE operator precedence

Operator precedence applies to EREs as it does to BREs. Table 3-6 provides the pre-
cedence for the ERE operators, from highest to lowest.

Table 3-6. ERE operator precedence from highest to lowest

Operator Meaning

[..7[==]1::] Bracket symbols for character collation
\metacharacter Escaped metacharacters

[] Bracket expressions

0 Grouping

*+ 2 {} Repetition of the preceding reqular expression
no symbol Concatenation

S Anchors

| Alternation

3.2.4 Regular Expression Extensions

Many programs provide extensions to regular expression syntax. Typically, such
extensions take the form of a backslash followed by an additional character, to cre-
ate new operators. This is similar to the use of a backslash in \(...\) and \{...\} in
POSIX BREs.

3.2 Regular Expressions | 45

The most common extensions are the operators \< and \>, which match the begin-
ning and end of a “word,” respectively. Words are made up of letters, digits, and
underscores. We call such characters word-constituent.

The beginning of a word occurs at either the beginning of a line or the first word-
constituent character following a nonword-constituent character. Similarly, the end
of a word occurs at the end of a line, or after the last word-constituent character
before a nonword-constituent one.

In practice, word matching is intuitive and straightforward. The regular expression
\<chop matches use chopsticks but does not match eat a lambchop. Similarly, the
regular expression chop\> matches the second string, but does not match the first.
Note that \«<chop\> does not match either string.

Although standardized by POSIX only for the ex editor, word matching is univer-
sally supported by the ed, ex, and vi editors that come standard with every commer-
cial Unix system. Word matching is also supported on the “clone” versions of these
programs that come with GNU/Linux and BSD systems, as well as in emacs, vim, and
vile. Most GNU utilities support it as well. Additional Unix programs that support
word matching often include grep and sed, but you should double-check the
manpages for the commands on your system.

GNU versions of the standard utilities that deal with regular expressions typically
support a number of additional operators. These operators are outlined in Table 3-7.

Table 3-7. Additional GNU regular expression operators

Operator Meaning

\w Matches any word-constituent character. Equivalentto [[:alnum:]_].

\W Matches any nonword-constituent character. Equivalent to [~[:alnum:]_].

\< \> Matches the beginning and end of a word, as described previously.

\b Matches the null string found at either the beginning or the end of a word. This is a generalization of

the \< and \> operators.
Note: Because awk uses \b to represent the backspace character, GNU awk (gawk) uses \y.
\B Matches the null string between two word-constituent characters.

VAT Matches the beginning and end of an emacs buffer, respectively. GNU programs (besides emacs)
generally treat these as being equivalent to * and $.

Finally, although POSIX explicitly states that the NUL character need not be match-
able, GNU programs have no such restriction. If a NUL character occurs in input
data, it can be matched by the . metacharacter or a bracket expression.

3.2.5 Which Programs Use Which Regular Expressions?

It is a historical artifact that there are two different regular expression flavors. While
the existence of egrep-style extended regular expressions was known during the early

46 | Chapter3: Searchingand Substitutions

Unix development period, Ken Thompson didn’t feel that it was necessary to imple-
ment such full-blown regular expressions for the ed editor. (Given the PDP-11’s small
address space, the complexity of extended regular expressions, and the fact that for
most editing jobs basic regular expressions are enough, this decision made sense.)

The code for ed then served as the base for grep. (grep is an abbreviation for the ed
command g/re/p: globally match re and print it.) ed’s code also served as an initial
base for sed.

Somewhere in the pre-V7 timeframe, egrep was created by Al Aho, a Bell Labs
researcher who did groundbreaking work in regular expression matching and lan-
guage parsing. The core matching code from egrep was later reused for regular
expressions in awk.

The \< and \> operators originated in a version of ed that was modified at the Univer-
sity of Waterloo by Rob Pike, Tom Duff, Hugh Redelmeier, and David Tilbrook.
(Rob Pike was the one who invented those operators.) Bill Joy at UCB adopted it for
the ex and vi editors, from whence it became widely used. Interval expressions origi-
nated in Programmer’s Workbench Unix’ and they filtered out into the commercial
Unix world via System III, and later, System V. Table 3-8 lists the various Unix pro-
grams and which flavor of regular expression they use.

Table 3-8. Unix programs and their regular expression type

Type grep sed ed ex/vi more egrep awk lex
BRE

ERE . . .

\< \)

lex is a specialized tool, generally used for the construction of lexical analyzers for
language processors. Even though it’s included in POSIX, we don’t discuss it fur-
ther, since it’s not relevant for shell scripting. The less and pg pagers, while not part
of POSIX, also support regular expressions. Some systems have a page program,
which is essentially the same as more, but clears the screen between each screenful of
output.

As we mentioned at the beginning of the chapter, to (attempt to) mitigate the multi-
ple grep problem, POSIX mandates a single grep program. By default, POSIX grep
uses BREs. With the -E option, it uses EREs, and with the -F option, it uses the fgrep
fixed-string matching algorithm. Thus, truly POSIX-conforming programs use grep
-E... instead of egrep.... However, since all Unix systems do have it, and are likely
to for many years to come, we continue to use it in our scripts.

* Programmer’s Workbench (PWB) Unix was a variant used within AT&T to support telephone switch soft-
ware development. It was also made available for commercial use.

3.2 Regular Expressions | 47

A final note is that traditionally, awk did not support interval expressions within its
flavor of extended regular expressions. Even as of 2005, support for interval expres-
sions is not universal among different vendor versions of awk. For maximal portabil-
ity, if you need to match braces from an awk program, you should escape them with a
backslash, or enclose them inside a bracket expression.

3.2.6 Making Substitutions in Text Files

Many shell scripting tasks start by extracting interesting text with grep or egrep. The
initial results of a regular expression search then become the “raw data” for further
processing. Often, at least one step consists of text substitution—that is, replacing
one bit of text with something else, or removing some part of the matched line.

Most of the time, the right program to use for text substitutions is sed, the Stream
Editor. sed is designed to edit files in a batch fashion, rather than interactively. When
you know that you have multiple changes to make, whether to one file or to many
files, it is much easier to write down the changes in an editing script and apply the
script to all the files that need to be changed. sed serves this purpose. (While it is
possible to write editing scripts for use with the ed or ex line editors, doing so is more
cumbersome, and it is much harder to [remember to] save the original file.)

We have found that for shell scripting, sed’s primary use is making simple text sub-
stitutions, so we cover that first. We then provide some additional background and
explanation of sed’s capabilities, but we purposely don’t go into a lot of detail. sed in
all its glory is described in the book sed & awk (O’Reilly), which is cited in the Bibli-
ography.

GNU sed is available at the location ftp:/ftp.gnu.org/gnu/sed/. It has a number of
interesting extensions that are documented in the manual that comes with it. The
GNU sed manual also contains some interesting examples, and the distribution
includes a test suite with some unusual programs. Perhaps the most amazing is an
implementation of the Unix dc arbitrary-precision calculator, written as a sed script!

An excellent source for all things sed is http://sed.sourceforge.net/. It includes links to
two FAQ documents on sed on the Internet. The first is available from http://www.
dreamwvr.com/sed-info/sed-faq.html. The second, and older, FAQ is available from
ftp://rtfm.mit.edu/publ/fags/editor-faq/sed.

3.2.7 BasicUsage

Most of the time, you’ll use sed in the middle of a pipeline to perform a substitution.
This is done with the s command, which takes a regular expression to look for,
replacement text with which to replace matched text, and optional flags:

sed 's/:.*%//" /etc/passwd | Remove everything after the first colon
sort -u Sort list and remove duplicates

48 | Chapter3: Searching and Substitutions

sed

Usage
sed [-n] 'editing command' [file ...]
sed [-n]-e 'editing command' ... [file ...]
sed [-n] -f script-file ... [file ...]
Purpose

To edit its input stream, producing results on standard output, instead of modify-
ing files in place the way an interactive editor does. Although sed has many com-
mands and can do complicated things, it is most often used for performing text
substitutions on an input stream, usually as part of a pipeline.
Major options
-e 'editing command'
Use editing command on the input data. -e must be used when there are mul-
tiple commands.
-f script-file
Read editing commands from script-file. This is useful when there are
many commands to execute.

Suppress the normal printing of each final modified line. Instead, lines must
be printed explicitly with the p command.
Behavior
This reads each line of each input file, or standard input if no files. For each line,
sed executes every editing command that applies to the input line. The result is writ-
ten on standard output (by default, or explicitly with the p command and the -n
option). With no -e or -f options, sed treats the first argument as the editing
command to use.

Here, the / character acts as a delimiter, separating the regular expression from the
replacement text. In this instance, the replacement text is empty (the infamous null
string), which effectively deletes the matched text. Although the / is the most com-
monly used delimiter, any printable character may be used instead. When working
with filenames, it is common to use punctuation characters for the delimiter (such as
a semicolon, colon, or comma):

find /home/tolstoy -type d -print | Find all directories
sed 's;/home/tolstoy/;/home/1t/;" | Change name, note use of semicolon delimiter
sed 's/"/mkdir /' | Insert mkdir command
sh -x Execute, with shell tracing

This script creates a copy of the directory structure in /home/tolstoy in /home/1lt
(perhaps in preparation for doing backups). (The find command is described in
Chapter 10. Its output in this case is a list of directory names, one per line, of every

3.2 Regular Expressions | 49

directory underneath /home/tolstoy.) The script uses the interesting trick of generat-
ing commands and then feeding the stream of commands as input to the shell. This is
a powerful and general technique that is not used as often as it should be."

3.2.7.1 Substitution details

We've already mentioned that any delimiter may be used besides slash. It is also pos-
sible to escape the delimiter within the regular expression or the replacement text,
but doing so can be much harder to read:

sed 's/\/home\/tolstoy\//\/home\/1t\//"

Earlier, in “Backreferences” [3.2.2.2], when describing POSIX BREs, we mentioned
the use of backreferences in regular expressions. sed understands backreferences.
Furthermore, they may be used in the replacement text to mean “substitute at this
point the text matched by the nth parenthesized subexpression.” This sounds worse
than it is:

$ echo /home/tolstoy/ | sed 's;\(/home\)/tolstoy/;\1/1t/;"

/home/1t/
sed replaces the \1 with the text that matched the /home part of the regular expres-
sion. In this case, all of the characters are literal ones, but any regular expression can
be enclosed between the \(and the \). Up to nine backreferences are allowed.

A few other characters are special in the replacement text as well. We've already
mentioned the need to backslash-escape the delimiter character. This is also, not sur-
prisingly, necessary for the backslash character itself. Finally, the & in the replace-
ment text means “substitute at this point the entire text matched by the regular
expression.” For example, suppose that we work for the Atlanta Chamber of Com-
merce, and we need to change our description of the city everywhere in our
brochure:

mv atlga.xml atlga.xml.old

sed 's/Atlanta/&, the capital of the South/' < atlga.xml.old > atlga.xml
(Being a modern shop, we use XML for all the possibilities it gives us, instead of an
expensive proprietary word processor.) This script saves the original brochure file, as
a backup. Doing something like this is always a good idea, especially when you’re
still learning to work with regular expressions and substitutions. It then applies the
change with sed.

To get a literal & character in the replacement text, backslash-escape it. For instance,
the following small script can be used to turn literal backslashes in DocBook/XML
files into the corresponding DocBook 8bsol; entity:

sed 's/\\/\\/g"

* This script does have a flaw: it can’t handle directories whose names contain spaces. This can be solved using
techniques we haven’t seen yet; see Chapter 10.

50 | Chapter3: Searchingand Substitutions

The g suffix on the previous s command stands for global. It means “replace every
occurrence of the regular expression with the replacement text.” Without it, sed
replaces only the first occurrence. Compare the results from these two invocations,
with and without the g:

$ echo Tolstoy reads well. Tolstoy writes well. > example.txt Sample input

$ sed 's/Tolstoy/Camus/' < example.txt No "g"
Camus reads well. Tolstoy writes well.
$ sed 's/Tolstoy/Camus/g' < example.txt With "g"

Camus reads well. Camus writes well.

A little-known fact (amaze your friends!) is that you can specify a trailing number to
indicate that the nth occurrence should be replaced:

$ sed 's/Tolstoy/Camus/2' < example.txt Second occurrence only

Tolstoy reads well. Camus writes well.
So far, we’ve done only one substitution at a time. While you can string multiple
instances of sed together in a pipeline, it’s easier to give sed multiple commands. On
the command line, this is done with the -e option. Each command is provided by
using one -e option per editing command:

sed -e 's/foo/bar/g' -e 's/chicken/cow/g' myfile.xml > myfile2.xml

When you have more than a few edits, though, this form gets tedious. At some point,
it’s better to put all your edits into a script file, and then run sed using the -f option:
$ cat fixup.sed
s/foo/bar/g

s/chicken/cow/g
s/draft animal/horse/g

$ sed -f fixup.sed myfile.xml > myfile2.xml

You can build up a script by combining the -e and -f options; the script is the con-
catenation of all editing commands provided by all the options, in the order given.
Additionally, POSIX allows you to separate commands on the same line with a
semicolon:

sed 's/foo/bar/g ; s/chicken/cow/g' myfile.xml > myfile2.xml
However, many commercial versions of sed don’t (yet) allow this, so it’s best to

avoid it for absolute portability.

Like its ancestor ed and its cousins ex and vi, sed remembers the last regular expres-
sion used at any point in a script. That same regular expression may be reused by
specifying an empty regular expression:

s/foo/bar/3 Change third foo
s//quux/ Now change first one

3.2 Regular Expressions | 51

Consider a straightforward script named html2xhtml.sed for making a start at con-
verting HTML to XHTML. This script converts tags to lowercase, and changes the

 tag into the self-closing form,
:

s/<H1>/<h1>/g Slash delimiter
s/<H2>/<h2>/g
s/<H3>/<h3>/g
s/<H4>/<h4>/g
s/<H5>/<h5>/g
s/<H6>/<h6>/g
1</H1>:</h1>:
1</H2>:</h2>:
1</H3>:</h3>:
1</Ha>:</h4>:
:</H5>:</h5>:
1</H6>:</h6>:¢g

t</[Hh][Tt][Mm][LL
:</[Hh][Tt][Mm][L1
:<[Bb][Rr]>:
:

Colon delimiter, slash in data

0Q 0Q 09 0a 0Q

]>:</html>:g
I>:</html>:g
g

nounnn nnnnon

Such a script can automate a large part of the task of converting from HTML to
XHTML, the standardized XML-based version of HTML.

3.2.8 sed Operation

sed’s operation is straightforward. Each file named on the command line is opened
and read, in turn. If there are no files, standard input is used, and the filename “-” (a
single dash) acts as a pseudonym for standard input.

sed reads through each file one line at a time. The line is placed in an area of mem-
ory termed the pattern space. This is like a variable in a programming language: an
area of memory that can be changed as desired under the direction of the editing
commands. All editing operations are applied to the contents of the pattern space.
When all operations have been completed, sed prints the final contents of the pat-
tern space to standard output, and then goes back to the beginning, reading another
line of input.

This operation is shown in Figure 3-2. The script uses two commands to change The
Unix Systeminto The UNIX Operating System.

3.2.8.1 To print or not to print

The -n option modifies sed’s default behavior. When supplied, sed does not print the
final contents of the pattern space when it’s done. Instead, p commands in the script
explicitly print the line. For example, one might simulate grep in this way:

sed -n '/<HTML>/p' *.html Only print <HTML> lines

52 | Chapter3: Searching and Substitutions

The Unix System

o)

Pattern space Script

s/Unix/UNIX/
(The Unix System) é___\l s/UNIX System/UNIX Operating System/
{ ((The UNIX System) -

(The UNIX Operating System) *——

output ’

The UNIX Operating System

Figure 3-2. Commands in sed scripts changing the pattern space

Although this example seems trivial, this feature is useful in more complicated
scripts. If you use a script file, you can enable this feature by using a special first line:
#n Turn off automatic printing
/<HTML>/p Only print <HTML> lines
As in the shell and many other Unix scripting languages, the # is a comment. sed
comments have to appear on their own lines, since they’re syntactically commands;
they’re just commands that don’t do anything. While POSIX indicates that com-
ments may appear anywhere in a script, many older versions of sed allow them only
on the first line. GNU sed does not have this limitation.

3.2.9 Matching Specific Lines

As mentioned, by default, sed applies every editing command to every input line. It is
possible to restrict the lines to which a command applies by prefixing the command
with an address. Thus, the full form of a sed command is:

address command
There are different kinds of addresses:

Regular expressions
Prefixing a command with a pattern limits the command to lines matching the
pattern. This can be used with the s command:

/oldfunc/ s/$/# XXX: migrate to newfunc/ Annotate some source code

3.2 Regular Expressions | 53

An empty pattern in the s command means “use the previous regular
expression”:

/Tolstoy/ s//& and Camus/g Talk about both authors

The last line

The symbol $ (as in ed and ex) means “the last line.” For example, this script is a
quick way to print the last line of a file:

sed -n "$p" "$1" Quoting as shown required!
For sed, the “last line” means the last line of the input. Even when processing
multiple files, sed views them as one long input stream, and $ applies only to the
last line of the last file. (GNU sed has an option to cause addresses to apply sepa-
rately to each file; see its documentation.)

Line numbers
You can use an absolute line number as an address. An example is provided
shortly.

Ranges
You can specify a range of lines by separating addresses with a comma:
sed -n '10,42p" foo.xml Print only lines 10-42
sed '/foo/,/bar/ s/baz/quux/g’ Make substitution only on range of lines

The second command says “starting with lines matching foo, and continuing
through lines matching bar, replace all occurrences of baz with quux.” (Readers
familiar with ed, ex, or the colon command prompt in vi will recognize this
usage.)

The use of two regular expressions separated by commas is termed a range
expression. In sed, it always includes at least two lines.

Negated regular expressions

Occasionally it’s useful to apply a command to all lines that don’t match a partic-
ular pattern. You specify this by adding an ! character after a regular expression
to look for:

/used/!s/new/used/g Change new to used on lines not matching used
The POSIX standard indicates that the behavior when whitespace follows the !
is “unspecified,” and recommends that completely portable applications not
place any space after it. This is apparently due to some historical versions of sed
not allowing it.

Example 3-1 demonstrates the use of absolute line numbers as addresses by present-
ing a simple version of the head program using sed.

Example 3-1. A version of the head command using sed

head --- print first n lines
#
usage: head N file

count=$1
sed ${count}q "$2"

54 | Chapter3: Searching and Substitutions

When invoked as head 10 foo.xml, sed ends up being invoked as sed 10q foo.xml.
The q command causes sed to quit, immediately; no further input is read or com-
mands executed. Later, in “Using sed for the head Command” [7.6.1], we show how
to make this script look more like the real head command.

As we’ve seen so far, sed uses / characters to delimit patterns to search for. How-
ever, there is provision for using a different delimiter in patterns. This is done by pre-
ceding the character with a backslash:

$ grep tolstoy /etc/passwd Show original line
tolstoy:x:2076:10:Leo Tolstoy:/home/tolstoy:/bin/bash
$ sed -n "\:tolstoy: s;;Tolstoy;p' /etc/passwd Make a change

Tolstoy:x:2076:10:Leo Tolstoy:/home/tolstoy:/bin/bash

In this example, the colon delimits the pattern to search for, and semicolons act as
delimiters for the s command. (The editing operation itself is trivial; our point here is
to demonstrate the use of different delimiters, not to make the change for its own
sake.)

3.2.10 How Much Text Gets Changed?

One issue we haven’t discussed yet is the question “how much text matches?” Really,
there are two questions. The second question is “where does the match start?”
Indeed, when doing simple text searches, such as with grep or egrep, both questions
are irrelevant. All you want to know is whether a line matched, and if so, to see the
line. Where in the line the match starts, or to where in the line it extends, doesn’t
matter.

However, knowing the answer to these questions becomes vitally important when
doing text substitution with sed or programs written in awk. (Understanding this is
also important for day-to-day use when working inside a text editor, although we
don’t cover text editing in this book.)

The answer to both questions is that a regular expression matches the longest, left-
most substring of the input text that can match the entire expression. In addition, a
match of the null string is considered to be longer than no match at all. (Thus, as we
explained earlier, given the regular expression ab*c, matching the text ac, the b* suc-
cessfully matches the null string between a and c.) Furthermore, the POSIX standard
states: “Consistent with the whole match being the longest of the leftmost matches,
each subpattern, from left to right, shall match the longest possible string.” (Subpat-
terns are the parts enclosed in parentheses in an ERE. For this purpose, GNU pro-
grams often extend this feature to \(...\) in BREs too.)

If sed is going to be replacing the text matched by a regular expression, it’s impor-
tant to be sure that the regular expression doesn’t match too little or too much text.
Here’s a simple example:

$ echo Tolstoy writes well | sed 's/Tolstoy/Camus/' Use fixed strings
Camus writes well

3.2 Regular Expressions | 55

Of course, sed can use full regular expressions. This is where understanding the
“longest leftmost” rule becomes important:

$ echo Tolstoy is worldly | sed 's/T.*y/Camus/' Try a regular expression

Camus What happened?
The apparent intent was to match just Tolstoy. However, since the match extends
over the longest possible amount of text, it went all the way to the y in worldly!
What’s needed is a more refined regular expression:

$ echo Tolstoy is worldly | sed 's/T[[:alpha:]]*y/Camus/’

Camus is worldly
In general, and especially if you’re still learning the subtleties of regular expressions,
when developing scripts that do lots of text slicing and dicing, you’ll want to test
things very carefully, and verify each step as you write it.

Finally, as we’ve seen, it’s possible to match the null string when doing text search-
ing. This is also true when doing text replacement, allowing you to insert text:

$ echo abc | sed 's/b*/1/' Replace first match
labc
$ echo abc | sed 's/b*/1/g' Replace all matches
lalcl

Note how b* matches the null string at the front and at the end of abc.

3.2.11 Lines Versus Strings

It is important to make a distinction between lines and strings. Most simple pro-
grams work on lines of input data. This includes grep and egrep, and 99 percent of
the time, sed. In such a case, by definition there won’t be any embedded newline
characters in the data being matched, and * and $ represent the beginning and end of
the line, respectively.

However, programming languages that work with regular expressions, such as awk,
Perl, and Python, usually work on strings. It may be that each string represents a sin-
gle input line, in which case * and $ still represent the beginning and end of the line.
However, these languages allow you to use different ways to specify how input
records are delimited, opening up the possibility that a single input “line” (i.e.,
record) may indeed have embedded newlines. In such a case, * and $ do not match
an embedded newline; they represent only the beginning and end of a string. This
point is worth bearing in mind when you start using the more programmable soft-
ware tools.

3.3 Working with Fields

For many applications, it’s helpful to view your data as consisting of records and
fields. A record is a single collection of related information, such as what a business

56 | Chapter3: Searching and Substitutions

might have for a customer, supplier, or employee, or what a school might have for a
student. A field is a single component of a record, such as a last name, a first name,
or a street address.

3.3.1 Text File Conventions

Because Unix encourages the use of textual data, it’s common to store data in a text
file, with each line representing a single record. There are two conventions for sepa-
rating fields within a line from each other. The first is to just use whitespace (spaces
or tabs):

$ cat myapp.data

model units sold salesperson
xj11 23 jane

145 12 Jjoe

caté 65 chris

In this example, lines beginning with a # character represent comments, and are
ignored. (This is a common convention. The ability to have comment lines is help-
ful, but it requires that your software be able to ignore such lines.) Each field is sepa-
rated from the next by an arbitrary number of space or tab characters. The second
convention is to use a particular delimiter character to separate fields, such as a
colon:

$ cat myapp.data

model:units sold:salesperson

xj11:23:jane

1j45:12:joe

cat6:65:chris

Each convention has advantages and disadvantages. When whitespace is the separa-
tor, it’s difficult to have real whitespace within the fields’ contents. (If you use a tab
as the separator, you can use a space character within a field, but this is visually con-
fusing, since you can’t easily tell the difference just by looking at the file.) On the flip
side, if you use an explicit delimiter character, it then becomes difficult to include
that delimiter within your data. Often, though, it’s possible to make a careful choice,
so that the need to include the delimiter becomes minimal or nonexistent.

One important difference between the two approaches has to do with
multiple occurrences of the delimiter character(s). When using
Wi whitespace, the convention is that multiple successive occurrences of
" spaces or tabs act as a single delimiter. However, when using a special
character, each occurrence separates a field. Thus, for example, two
colon characters in the second version of myapp.data (a “::”) delimit
an empty field.

3.3 Working with Fields | 57

The prime example of the delimiter-separated field approach is /etc/passwd. There is
one line per user of the system, and the fields are colon-separated. We use /etc/
passwd for many examples throughout the book, since a large number of system
administration tasks involve it. Here is a typical entry:

tolstoy:x:2076:10:Leo Tolstoy:/home/tolstoy:/bin/bash
The seven fields of a password file entry are:

1. The username.

2. The encrypted password. (This can be an asterisk if the account is disabled, or
possibly a different character if encrypted passwords are stored separately in /etc/
shadow.)

3. The user ID number.
4. The group ID number.

5. The user’s personal name and possibly other relevant data (office number, tele-
phone number, and so on).
6. The home directory.

7. The login shell.
Some Unix tools work better with whitespace-delimited fields, others with delimiter-

separated fields, and some utilities are equally adept at working with either kind of
file, as we’re about to see.

3.3.2 Selecting Fields with cut

The cut command was designed for cutting out data from text files. It can work on
either a field basis or a character basis. The latter is useful for cutting out particular
columns from a file. Beware, though: a tab character counts as a single character!”

For example, the following command prints the login name and full name of each
user on the system:

$ cut -d : -f 1,5 /etc/passwd Extract fields
root:root Administrative accounts
tolstoy:Leo Tolstoy Real users

austen:Jane Austen
camus :Albert Camus

By choosing a different field number, we can extract each user’s home directory:

$ cut -d : -f 6 /etc/passwd Extract home directory
/root Administrative accounts

* This can be worked around with expand and unexpand: see the manual pages for expand(1).

58 | Chapter3: Searching and Substitutions

cut

Usage
cut -c list [file ...]
cut -f Iist [-d delim] [file ...]
Purpose
To select one or more fields or groups of characters from an input file, presumably
for further processing within a pipeline.
Major options
-c list
Cut based on characters. 1ist is a comma-separated list of character numbers
or ranges, such as 1,3,5-12,42.
-d delim
Use delim as the delimiter with the -f option. The default delimiter is the tab
character.
-f list
Cut based on fields. 1ist is a comma-separated list of field numbers or ranges.
Behavior
Cut out the named fields or ranges of input characters. When processing fields,
each delimiter character separates fields. The output fields are separated by the
given delimiter character. Read standard input if no files are given on the com-
mand line. See the text for examples.
Caveats
On POSIX systems, cut understands multibyte characters. Thus, “character” is
not synonymous with “byte.” See the manual pages for cut(1) for the details.
Some systems have limits on the size of an input line, particularly when multibyte
characters are involved.

/home/tolstoy Real users
/home/austen
/home/camus

Cutting by character list can occasionally be useful. For example, to pull out just the
permissions field from 1s -1:

$1s -1 | cut -c 1-10
total 2878
-TW-T--T--
dTWXT -XT-X
-Y--T--T--
-TW-T--T--

3.3 Working with Fields | 59

However, this is riskier than using fields, since you’re not guaranteed that each field
in a line will always have the exact same width in every line. In general, we prefer
field-based commands for extracting data.

3.3.3 Joining Fields with join

The join command lets you merge files, where the records in each file share a com-
mon key—that is, the field which is the primary one for the record. Keys are often
things such as usernames, personal last names, employee ID numbers, and so on. For
example, you might have two files, one which lists how many items a salesperson
sold and one which lists the salesperson’s quota:

join
Usage
join [options ...] file1 file2
Purpose
To merge records in sorted files based on a common key.
Major options
-1 field1
-2 field2
Specifies the fields on which to join. -1 field1 specifies field1 from file1,
and -2 field2 specifies field2 from file2. Fields are numbered from one, not
from zero.
-o file.field
Make the output consist of field field from file file. The common field is not
printed unless requested explicitly. Use multiple -o options to print multiple
output fields.
-t separator
Use separator as the input field separator instead of whitespace. This charac-
ter becomes the output field separator as well.
Behavior
Read file1 and file2, merging records based on a common key. By default, runs
of whitespace separate fields. The output consists of the common key, the rest of
the record from file1, followed by the rest of the record from file2. If file1 is -,
join reads standard input. The first field of each file is the default key upon which
to join; this can be changed with -1 and -2. Lines without keys in both files are not
printed by default. (Options exist to change this; see the manual pages for join(1).)
Caveats
The -1 and -2 options are relatively new. On older systems, you may need to use
-j1 field1 and -j2 field2.

60 | Chapter3: Searchingand Substitutions

$ cat sales Show sales file

sales data Explanatory comments
salesperson amount

joe 100

jane 200

herman 150

chris 300

$ cat quotas Show quotas file
quotas

salesperson quota

joe 50

jane 75

herman 80

chris 95

Each record has two fields: the salesperson’s name and the corresponding amount.

In this instance, there are multiple spaces between the columns so that they line up
nicely.

In order for join to work correctly, the input files must be sorted. The program in
Example 3-2, merge-sales.sh, merges the two files using join.

Example 3-2. merge-sales.sh

#! /bin/sh

merge-sales.sh
#
Combine quota and sales data

Remove comments and sort datafiles
sed '/M#/d' quotas | sort > quotas.sorted
sed '/Mt/d' sales | sort > sales.sorted

Combine on first key, results to standard output
join quotas.sorted sales.sorted

Remove temporary files
rm quotas.sorted sales.sorted

The first step is to remove the comment lines with sed, and then to sort each file. The
sorted temporary files become the input to the join command, and finally the script
removes the temporary files. Here is what happens when it’s run:

$./merge-sales.sh
chris 95 300
herman 80 150
Jjane 75 200

Jjoe 50 100

3.3 Working with Fields | 61

3.3.4 Rearranging Fields with awk

awk is a useful programming language in its own right. In fact, we devote Chapter 9
to covering the most important parts of the language. Although you can do quite a
lot with awk, it was purposely designed to be useful in shell scripting—for doing sim-
ple text manipulation, such as field extraction and rearrangement. In this section, we
examine the basics of awk so that you can understand such “one-liners” when you see
them.

3.3.4.1 Patterns and actions

awk’s basic paradigm is different from many programming languages. It is similar in
many ways to sed:

awk 'program' [file ...]

awk reads records (lines) one at a time from each file named on the command line (or
standard input if none). For each line, it applies the commands as specified by the
program to the line. The basic structure of an awk program is:

pattern { action }
pattern { action }

The pattern part can be almost any expression, but in one-liners, it’s typically an
ERE enclosed in slashes. The action can be any awk statement, but in one-liners, it’s
typically a plain print statement. (Examples are coming up.)

Either the pattern or the action may be omitted (but, of course, not both). A miss-
ing pattern executes the action for every input record. A missing action is equiva-
lent to { print }, which (as we shall see shortly) prints the entire record. Most one-
liners are of the form:

«o. | awk '{ print some-stuff }' | ...

For each record, awk tests each pattern in the program. If the pattern is true (e.g., the
record matches the regular expression, or the general expression evaluates to true),
then awk executes the code in the action.

3.3.4.2 Fields

awk has fields and records as a central part of its design. awk reads input records (usu-
ally just lines) and automatically splits each record into fields. It sets the built-in vari-
able NF to the number of fields in each record.

By default, whitespace separates fields—i.e., runs of spaces and/or tab characters
(like join). This is usually what you want, but you have other options. By setting the
variable FS to a different value, you can change how awk separates fields. If you use a
single character, then each occurrence of that character separates fields (like cut -d).

62 | Chapter3: Searching and Substitutions

Or, and here is where awk stands out, you can set it to a full ERE, in which case each
occurrence of text that matches that ERE acts as a field separator.

Field values are designated as such with the $ character. Usually $ is followed by a
numeric constant. However, it can be followed by an expression; most typically the
name of a variable. Here are some examples:

awk '{ print $1 }' Print first field (no pattern)

awk '{ print $2, $5 }' Print second and fifth fields (no pattern)
awk '{ print $1, $NF }' Print first and last fields (no pattern)
awk 'NF >0 { print $0 }' Print nonempty lines (pattern and action)
awk 'NF > 0' Same (no action, default is to print)

A special case is field number zero, which represents the whole record.

3.3.4.3 Setting the field separators
For simple programs, you can change the field separator with the -F option. For
example, to print the username and full name from the /etc/passwd file:

$ awk -F: '{ print $1, $5 }' /etc/passwd Process /Jetc/passwd
root root Administrative accounts

tolstoy Leo Tolstoy Real users
austen Jane Austen
camus Albert Camus

The -F option sets the FS variable automatically. Note how the program does not
have to reference FS directly, nor does it have to manage reading records and split-
ting them into fields; awk does it all automatically.

You may have noticed that each field in the output is separated with a space, even
though the input field separator is a colon. Unlike almost all the other tools, awk
treats the two separators as distinct from each other. You can change the output field
separator by setting the OFS variable. You do this on the command line with the -v
option, which sets awk’s variables. The value can be any string. For example:

$ awk -F: -v 'OFS=**' '{ print $1, $5 }' /etc/passwd Process /etc/passwd
root**root Administrative accounts

tolstoy**Leo Tolstoy Real users
austen**Jane Austen
camus**Albert Camus

We will see shortly that there are other ways to set these variables. They may be
more legible, depending on your taste.

3.3 Working with Fields | 63

3.3.4.4 Printing lines

As we’ve shown so far, most of the time you just want to print selected fields, or
arrange them in a different order. Simple printing is done with the print statement.
You supply it a list of fields, variables, or strings to print:

$ awk -F: '{ print "User", $1, "is really", $5 }' /etc/passwd
User root is really root

User tolstoy is really Leo Tolstoy
User austen is really Jane Austen
User camus is really Albert Camus

A plain print statement, without any arguments, is equivalent to print $0, which
prints the whole record.

For cases like the example just shown, when you want to mix text and values, it is
usually clearer to use awk’s version of the printf statement. It is similar enough to the
shell (and C) version of printf described in “Fancier Output with printf” [2.5.4],
that we won’t go into the details again. Here is the previous example, using printf:

$ awk -F: '{ printf "User %s is really %s\n", $1, $5 }' /etc/passwd
User root is really root

User tolstoy is really Leo Tolstoy
User austen is really Jane Austen
User camus is really Albert Camus

As with the shell-level echo and printf, awk’s print statement automatically supplies
a final newline, whereas with the printf statement you must supply it yourself, using
the \n escape sequence.

N
A
S Be sure to separate arguments to print with a comma! Without the
ﬁ:\ comma, awk concatenates adjacent values:
&0 -
1) $ awk -F: '{ print "User" $1 "is really" $5 }' /etc/passwd

Userrootis reallyroot

Usertolstoyis reallyleo Tolstoy
Useraustenis reallyJane Austen
Usercamusis reallyAlbert Camus

String concatenation of this form is unlikely to be what you want.
Omitting the comma is a common, and hard-to-find, mistake.

3.3.4.5 Startup and cleanup actions

Two special “patterns,” BEGIN and END, let you provide startup and cleanup actions
for your awk programs. It is more common to use them in larger awk programs, usu-
ally written in separate files instead of on the command line:

64 | Chapter3: Searching and Substitutions

BEGIN { startup code }
patterni { actioni }
pattern2 { action2 }

END { cleanup code }

BEGIN and END blocks are optional. If you have them, it is conventional, but not
required, to place them at the beginning and end, respectively, of the awk program.
You can also have multiple BEGIN and END blocks; awk executes them in the order
they’re encountered in the program: all the BEGIN blocks once at the beginning, and
all the END blocks once at the end. For simple programs, BEGIN is used for setting
variables:

$ awk 'BEGIN { FS = ":" ; OFS = "**" } Use BEGIN to set variables

> { print $1, $5 }' /etc/passwd Quoted program continues on second line
root**root

tolstoy**Leo Tolstoy Output, as before

austen**Jane Austen
camus**Albert Camus

The POSIX standard describes the awk language and the options for

“E’m the awk program. POSIX awk is based on so-called “new awk,” first
released to the world with System V Release 3.1 in 1987, and modi-
fied somewhat for System V Release 4 in 1989.

Alas, as late as 2005, the Solaris /bin/awk is still the original V7 ver-
sion of awk, from 1979! On Solaris systems, you should use /usxr/
xpg4/bin/awk, or install one of the free versions of awk mentioned in
Chapter 9.

3.4 Summary

The grep program is the primary tool for extracting interesting lines of text from
input datafiles. POSIX mandates a single version with different options to provide
the behavior traditionally obtained from the three grep variants: grep, egrep, and
fgrep.

Although you can search for plain string constants, regular expressions provide a
more powerful way to describe text to be matched. Most characters match them-
selves, whereas certain others act as metacharacters, specifying actions such as
“match zero or more of,” “match exactly 10 of,” and so on.

POSIX regular expressions come in two flavors: Basic Regular Expressions (BREs)
and Extended Regular Expressions (EREs). Which programs use which regular
expression flavor is based upon historical practice, with the POSIX specification

3.4 Summary | 65

reducing the number of regular expression flavors to just two. For the most part,
EREs are a superset of BREs, but not completely.

Regular expressions are sensitive to the locale in which the program runs; in particu-
lar, ranges within a bracket expression should be avoided in favor of character classes
such as [[:alnum:]]. Many GNU programs have additional metacharacters.

sed is the primary tool for making simple string substitutions. Since, in our experi-
ence, most shell scripts use sed only for substitutions, we have purposely not cov-
ered everything sed can do. The sed & awk book listed in the Bibliography provides
more information.

The “longest leftmost” rule describes where text matches and for how long the
match extends. This is important when doing text substitutions with sed, awk, or an
interactive text editor. It is also important to understand when there is a distinction
between a line and a string. In some programming languages, a single string may
contain multiple lines, in which case » and $ usually apply to the beginning and end
of the string.

For many operations, it’s useful to think of each line in a text file as an individual
record, with data in the line consisting of fields. Fields are separated by either
whitespace or a special delimiter character, and different Unix tools are available to
work with both kinds of data. The cut command cuts out selected ranges of charac-
ters or fields, and join is handy for merging files where records share a common key

field.

awk is often used for simple one-liners, where it’s necessary to just print selected
fields, or rearrange the order of fields within a line. Since it’s a programming lan-
guage, you have much more power, flexibility, and control, even in small programs.

66 | Chapter3: Searching and Substitutions

CHAPTER 4
Text Processing Tools

Some operations on text files are so widely applicable that standard tools for those
tasks were developed early in the Unix work at Bell Labs. In this chapter, we look at
the most important ones.

4.1 Sorting Text

Text files that contain independent records of data are often candidates for sorting. A
predictable record order makes life easier for human users: book indexes, dictionar-
ies, parts catalogs, and telephone directories have little value if they are unordered.
Sorted records can also make programming easier and more efficient, as we will illus-
trate with the construction of an office directory in Chapter 5.

Like awk, cut, and join, sort views its input as a stream of records made up of fields
of variable width, with records delimited by newline characters and fields delimited
by whitespace or a user-specifiable single character.

4.1.1 Sorting by Lines

In the simplest case, when no command-line options are supplied, complete records
are sorted according to the order defined by the current locale. In the traditional C
locale, that means ASCII order, but you can set an alternate locale as we described in
“Internationalization and Localization” [2.8].

A tiny bilingual dictionary in the ISO 8859-1 encoding translates four French words
differing only in accents:

$ cat french-english Show the tiny dictionary
cote coast

cote dimension

coté dimensioned

coté side

67

sort

Usage
sort [options | [file(s)]

Purpose
Sort input lines into an order determined by the key field and datatype options, and
the locale.

Major options

-b
Ignore leading whitespace.
e
Check that input is correctly sorted. There is no output, but the exit code is non-
zero if the input is not sorted.
-d
Dictionary order: only alphanumerics and whitespace are significant.
-8
General numeric value: compare fields as floating-point numbers. This works like
-n, except that numbers may have decimal points and exponents (e.g., 6.022e+23).
GNU version only.
£
Fold letters implicitly to a common lettercase so that sorting is case-insensitive.
-i
Ignore nonprintable characters.
-k
Define the sort key field. See “Sorting by Fields”, for details.
-m
Merge already-sorted input files into a sorted output stream.
-n

Compare fields as integer numbers.

-ooutfile
Write output to the specified file instead of to standard output. If the file is one of
the input files, sort copies it to a temporary file before sorting and writing the out-

put.

-1
Reverse the sort order to descending, rather than the default ascending.

-t char
Use the single character char as the default field separator, instead of the default
of whitespace.

-u
Unique records only: discard all but the first record in a group with equal keys.
Only the key fields matter: other parts of the discarded records may differ.

Behavior

sort reads the specified files, or standard input if no files are given, and writes the
sorted data on standard output.

68 | Chapter4: TextProcessing Tools

To understand the sorting, use the octal dump tool, od, to display the French words
in ASCII and octal:

$ cut -f1 french-english | od -a -b Display French words in octal bytes
00000000 ¢ t t e nl ¢ o t enl ¢ o t 1 nl c
143 364 164 145 012 143 157 164 145 012 143 157 164 351 012 143
0000020 t t i nl
364 164 351 012
0000024

Evidently, with the ASCII option -a, od strips the high-order bit of characters, so the
accented letters have been mangled, but we can see their octal values: é is 3514 and 6
is 364g.

On GNU/Linux systems, you can confirm the character values like this:

$ man iso_8859_1 Check the ISO 8859-1 manual page

351 233 E9 é LATIN SMALL LETTER E WITH ACUTE

LATIN SMALL LETTER O WITH CIRCUMFLEX

o

364 244 F4

First, sort the file in strict byte order:

$ LC_ALL=C sort french-english Sort in traditional ASCII order

cote dimension

coté dimensioned

cote coast

coté side
Notice that e (145g) sorted before é (351g), and o (157) sorted before 6 (364g), as
expected from their numerical values.

Now sort the text in Canadian-French order:

$ LC_ALL=fr_CA.iso088591 sort french-english Sort in Canadian-French locale
cote coast

cote dimension

coté dimensioned

coté side

The output order clearly differs from the traditional ordering by raw byte values.

Sorting conventions are strongly dependent on language, country, and culture, and
the rules are sometimes astonishingly complex. Even English, which mostly pre-
tends that accents are irrelevant, can have complex sorting rules: examine your local
telephone directory to see how lettercase, digits, spaces, punctuation, and name vari-
ants like McKay and Mackay are handled.

4.1 SortingText | 69

4.1.2 Sorting by Fields

For more control over sorting, the -k option allows you to specify the field to sort on,
and the -t option lets you choose the field delimiter.

If -t is not specified, then fields are separated by whitespace and leading and trailing
whitespace in the record is ignored. With the -t option, the specified character
delimits fields, and whitespace is significant. Thus, a three-character record consist-
ing of space-X-space has one field without -t, but three with -t" ' (the first and
third fields are empty).

The -k option is followed by a field number, or number pair, optionally separated by
whitespace after -k. Each number may be suffixed by a dotted character position,
and/or one of the modifier letters shown in Table 4-1.

Table 4-1. Sort key field types

Letter Description

b Ignore leading whitespace.

d Dictionary order.

f Fold letters implicitly to a common lettercase.

g Compare as general floating-point numbers. GNU version only.
i Ignore nonprintable characters.

=

Compare as (integer) numbers.

r Reverse the sort order.

Fields and characters within fields are numbered starting from one.

If only one field number is specified, the sort key begins at the start of that field, and
continues to the end of the record (not the end of the field).

If a comma-separated pair of field numbers is given, the sort key starts at the begin-
ning of the first field, and finishes at the end of the second field.

With a dotted character position, comparison begins (first of a number pair) or ends
(second of a number pair) at that character position: -k2.4,5.6 compares starting

with the fourth character of the second field and ending with the sixth character of
the fifth field.

If the start of a sort key falls beyond the end of the record, then the sort key is empty,
and empty sort keys sort before all nonempty ones.

When multiple -k options are given, sorting is by the first key field, and then, when
records match in that key, by the second key field, and so on.

70 | Chapter4: Text Processing Tools

N N

While the -k option is available on all of the systems that we tested,
sort also recognizes an older field specification, now considered obso-
%Ust lete, where fields and character positions are numbered from zero. The
" key start for character m in field n is defined by +n.m, and the key end
by -n.m. For example, sort +2.1 -3.2 is equivalent to sort -k3.2,4.3.
If the character position is omitted, it defaults to zero. Thus, +4.0nr
and +4nr mean the same thing: a numeric key, beginning at the start of
the fifth field, to be sorted in reverse (descending) order.

Let’s try out these options on a sample password file, sorting it by the username,
which is found in the first colon-separated field:

For

$ sort -t: -ki,1 /etc/passwd Sort by username
bin:x:1:1:bin:/bin:/sbin/nologin

chico:x:12501:1000:Chico Marx:/home/chico:/bin/bash
daemon:x:2:2:daemon:/sbin:/sbin/nologin
groucho:x:12503:2000:Groucho Marx:/home/groucho:/bin/sh
gummo:X:12504:3000:Gummo Marx:/home/gummo:/usr/local/bin/ksh93
harpo:x:12502:1000:Harpo Marx:/home/harpo:/bin/ksh
root:x:0:0:r00t:/T00t:/bin/bash

zeppo:x:12505:1000:Zeppo Marx:/home/zeppo:/bin/zsh

more control, add a modifier letter in the field selector to define the type of data

in the field and the sorting order. Here’s how to sort the password file by descending
UID:

A m

$ sort -t: -k3nr /etc/passwd Sort by descending UID
zeppo:x:12505:1000:Zeppo Marx:/home/zeppo:/bin/zsh
gummo:x:12504:3000:Gummo Marx:/home/gummo:/usr/local/bin/ksh93
groucho:x:12503:2000:Groucho Marx:/home/groucho:/bin/sh
harpo:x:12502:1000:Harpo Marx:/home/harpo:/bin/ksh
chico:x:12501:1000:Chico Marx:/home/chico:/bin/bash
daemon:x:2:2:daemon:/sbin:/sbin/nologin
bin:x:1:1:bin:/bin:/sbin/nologin
root:x:0:0:root:/root:/bin/bash

ore precise field specification would have been -k3nr, 3 (that is, from the start of

field three, numerically, in reverse order, to the end of field three), or -k3,3nr, or
even -k3,3 -n -1, but sort stops collecting a number at the first nondigit, so -k3nr
works correctly.

In our password file example, three users have a common GID in field 4, so we could

sort

first by GID, and then by UID, with:

$ sort -t: -kan -k3n /etc/passwd Sort by GID and UID
root:x:0:0:r00t:/T00t:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
chico:x:12501:1000:Chico Marx:/home/chico:/bin/bash
harpo:x:12502:1000:Harpo Marx:/home/harpo:/bin/ksh

4.1 SortingText | 71

zeppo:x:12505:1000:Zeppo Marx:/home/zeppo:/bin/zsh
groucho:x:12503:2000:Groucho Marx:/home/groucho:/bin/sh
gummo:X:12504:3000:Gummo Marx:/home/gummo:/usr/local/bin/ksh93

The useful -u option asks sort to output only unique records, where unique means
that their sort-key fields match, even if there are differences elsewhere. Reusing the
password file one last time, we find:

$ sort -t: -k4n -u /etc/passwd Sort by unique GID
root:x:0:0:r00t:/T00t:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
chico:x:12501:1000:Chico Marx:/home/chico:/bin/bash
groucho:x:12503:2000:Groucho Marx:/home/groucho:/bin/sh
gummo:x:12504:3000:Gummo Marx:/home/gummo:/usr/local/bin/ksh93

Notice that the output is shorter: three users are in group 1000, but only one of them
was output. We show another way to select unique records later in “Removing
Duplicates” [4.2].

4.1.3 Sorting Text Blocks

Sometimes you need to sort data composed of multiline records. A good example is
an address list, which is conveniently stored with one or more blank lines between
addresses. For data like this, there is no constant sort-key position that could be used
in a -k option, so you have to help out by supplying some extra markup. Here’s a
simple example:

$ cat my-friends Show address file
SORTKEY: SchloB, Hans Jiirgen

Hans Jiirgen SchloR

Unter den Linden 78

D-10117 Berlin

Germany

SORTKEY: Jones, Adrian
Adrian Jones

371 Montgomery Park Road
Henley-on-Thames RG9 4AJ
UK

SORTKEY: Brown, Kim
Kim Brown

1841 S Main Street
Westchester, NY 10502
USA

The sorting trick is to use the ability of awk to handle more-general record separators
to recognize paragraph breaks, temporarily replace the line breaks inside each
address with an otherwise unused character, such as an unprintable control charac-

72 | (Chapter4: TextProcessing Tools

ter, and replace the paragraph break with a newline. sort then sees lines that look

like this:

SORTKEY: SchloB, Hans Jiirgen"ZHans Jiirgen SchloR”ZUnter den Linden 78"Z...

SORTKEY: Jones, Adrian“ZAdrian Jones”Z371 Montgomery Park Road"Z...

SORTKEY: Brown, Kim"ZKim Brown”Z1841 S Main Street”Z...
Here, ~Z is a Ctrl-Z character. A filter step downstream from sort restores the line
breaks and paragraph breaks, and the sort key lines are easily removed, if desired,
with grep. The entire pipeline looks like this:

cat my-friends | Pipe in address file
awk -v RS="" "{ gsub("\n", "~Z"); print }' | Convert addresses to single lines
sort -f | Sort address bundles, ignoring case
awk -v ORS="\n\n" '{ gsub("~Z", "\n"); print }' | Restore line structure
grep -v '# SORTKEY' Remove markup lines

The gsub() function performs “global substitutions.” It is similar to the s/x/y/g con-
struct in sed. The RS variable is the input Record Separator. Normally, input records
are separated by newlines, making each line a separate record. Using RS="" is a spe-
cial case, whereby records are separated by blank lines; i.e., each block or “para-
graph” of text forms a separate record. This is exactly the form of our input data.
Finally, ORS is the Output Record Separator; each output record printed with print is
terminated with its value. Its default is also normally a single newline; setting it here
to "\n\n" preserves the input format with blank lines separating records. (More detail
on these constructs may be found in Chapter 9.)

The output of this pipeline on our address file is:

Kim Brown

1841 S Main Street
Westchester, NY 10502
USA

Adrian Jones

371 Montgomery Park Road
Henley-on-Thames RG9 4A3J
UK

Hans Jiirgen SchloR

Unter den Linden 78

D-10117 Berlin

Germany
The beauty of this approach is that we can easily include additional keys in each
address that can be used for both sorting and selection: for example, an extra
markup line of the form:

COUNTRY: UK

in each address, and an additional pipeline stage of grep '# COUNTRY: UK' just before
the sort, would let us extract only the UK addresses for further processing.

4.1 SortingText | 73

You could, of course, go overboard and use XML markup to identify the parts of the
address in excruciating detail:
<address>
<personalname>Hans Jiirgen</personalname>
<familyname>SchloR</familyname>

<streetname>Unter den Linden<streetname>
<streetnumber>78</streetnumber>

<postalcode>D-10117</postalcode>
<city>Berlin</city>

<country>Germany</country>
</address>

With fancier data-processing filters, you could then please your post office by pre-

sorting your mail by country and postal code, but our minimal markup and simple
pipeline are often good enough to get the job done.

4.1.4 Sort Efficiency

The obvious way to sort data requires comparing all pairs of items to see which
comes first, and leads to algorithms known as bubble sort and insertion sort. These
quick-and-dirty algorithms are fine for small amounts of data, but they certainly are
not quick for large amounts, because their work to sort n records grows like n2. This
is quite different from almost all of the filters that we discuss in this book: they read
a record, process it, and output it, so their execution time is directly proportional to
the number of records, n.

Fortunately, the sorting problem has had lots of attention in the computing commu-
nity, and good sorting algorithms are known whose average complexity goes like n3/2
(shellsort), nlogn (heapsort, mergesort, and quicksort), and for restricted kinds of
data, n (distribution sort). The Unix sort command implementation has received
extensive study and optimization: you can be confident that it will do the job effi-
ciently, and almost certainly better than you can do yourself without learning a lot
more about sorting algorithms.

4.1.5 Sort Stability

An important question about sorting algorithms is whether or not they are stable:
that is, is the input order of equal records preserved in the output? A stable sort may
be desirable when records are sorted by multiple keys, or more than once in a pipe-
line. POSIX does not require that sort be stable, and most implementations are not,
as this example shows:

$ sort -t_ -ki,1 -k2,2 << EOF Sort four lines by first two fields

> one_two
> one_two_three
> one_two_four
> one_two_five
> EOF

74 | Chapter4: TextProcessing Tools

one_two

one_two_five

one_two_four

one_two_three
The sort fields are identical in each record, but the output differs from the input, so
sort is not stable. Fortunately, the GNU implementation in the coreutils package
remedies that deficiency via the --stable option: its output for this example cor-
rectly matches the input.

4.1.6 Sort Wrap-Up

sort certainly ranks in the top ten Unix commands: learn it well because you’ll use it
often. More details on sort are provided in the sidebar near the start of this chapter,
but consult the manual pages for sort(1) for the complete story on your system. sort
is, of course, standardized by POSIX, so it should be available on every computer
that you are likely to use.

4.2 Removing Duplicates

It is sometimes useful to remove consecutive duplicate records from a data stream.
We showed in “Sorting by Fields” [4.1.2] that sort -u would do that job, but we also
saw that the elimination is based on matching keys rather than matching records.
The uniq command provides another way to filter data: it is frequently used in a
pipeline to eliminate duplicate records downstream from a sort operation:

sort ... | uniq | ...

uniq has three useful options that find frequent application. The -c option prefixes
each output line with a count of the number of times that it occurred, and we will
use it in the word-frequency filter in Example 5-5 in Chapter 5. The -d option shows
only lines that are duplicated, and the -u option shows just the nonduplicate lines.
Here are some examples:

$ cat latin-numbers Show the test file
tres
unus
duo
tres
duo
tres

$ sort latin-numbers | uniq Show unique sorted records
duo
tres
unus

* Available at ftp:/ftp.gnu.org/gnu/coreutils/.

4.2 Removing Duplicates | 75

$ sort latin-numbers | uniq -c Count unique sorted records

2 duo

3 tres

1 unus
$ sort latin-numbers | uniq -d Show only duplicate records
duo
tres
$ sort latin-numbers | uniq -u Show only nonduplicate records
unus

uniq is sometimes a useful complement to the diff utility for figuring out the differ-
ences between two similar data streams: dictionary word lists, pathnames in mir-
rored directory trees, telephone books, and so on. Most implementations have other
options that you can find described in the manual pages for unig(1), but their use is
rare. Like sort, uniq is standardized by POSIX, so you can use it everywhere.

4.3 Reformatting Paragraphs

Most powerful text editors provide commands that make it easy to reformat para-
graphs by changing line breaks so that lines do not exceed a width that is comfort-
able for a human to read; we used such commands a lot in writing this book.
Sometimes you need to do this to a data stream in a shell script, or inside an editor
that lacks a reformatting command but does have a shell escape. In this case, fmt is
what you need. Although POSIX makes no mention of fmt, you can find it on every
current flavor of Unix; if you have an older system that lacks fmt, simply install the
GNU coreutils package.

Although some implementations of fmt have more options, only two find frequent
use: -s means split long lines only, but do not join short lines to make longer ones,
and -w n sets the output line width to n characters (default: usually about 75 or so).
Here are some examples with chunks of a spelling dictionary that has just one word
per line:

$ sed -n -e 9991,10010p /usr/dict/words | fmt Reformat 20 dictionary words

Graff graft graham grail grain grainy grammar grammarian grammatic

granary grand grandchild grandchildren granddaughter grandeur grandfather
grandiloquent grandiose grandma grandmother

$ sed -n -e 9995,10004p /usr/dict/words | fmt -w 30 Reformat 10 words into short lines
grain grainy grammar

grammarian grammatic

granary grand grandchild

grandchildren granddaughter

If your system does not have /usr/dict/words, then it probably has an equivalent file
named /usr/share/dict/words or /usr/share/lib/dict/words.

76 | Chapter4: Text Processing Tools

The split-only option, -s, is helpful in wrapping long lines while leaving short lines
intact, and thus minimizing the differences from the original version:

$ fmt -s -w 10 << END_OF_DATA Reformat long lines only
one two three four five
six

seven

eight

> END_OF_DATA

one two

three

four five

six

seven

eight

>
>
>
>

You might expect that you could split an input stream into one word

‘5@ per line with fmt -w 0, or remove line breaks entirely with a large

width. Unfortunately, fmt implementations vary in behavior:

* Older versions of fmt lack the -w option; they use -n to specify an
n-character width.

* All reject a zero width, but accept -w 1 or -1.

* All preserve leading space.

* Some preserve lines that look like mail headers.

* Some preserve lines beginning with a dot (troff typesetter com-
mands).

* Most limit the width. We found peculiar upper bounds of 1021
(Solaris), 2048 (HP/UX 11), 4093 (AIX and IRIX), 8189 (OSF/1
4.0), 12285 (OSF/1 5.1), and 2147483647 (largest 32-bit signed
integer: FreeBSD, GNU/Linux, and Mac OS).

* The NetBSD and OpenBSD versions of fmt have a different com-
mand-line syntax, and apparently allocate a buffer to hold the
output line, since they give an out of memory diagnostic for large
width values.

e [RIX fmt is found in /usr/sbin, a directory that is unlikely to be
in your search path.

¢ HP/UX before version 11.0 did not have fmt.

These variations make it difficult to use fmt in portable scripts, or for
complex reformatting tasks.

4.4 Counting Lines, Words, and Characters

We have used the word-count utility, we, a few times before. It is probably one of the
oldest, and simplest, tools in the Unix toolbox, and POSIX standardizes it. By
default, wc outputs a one-line report of the number of lines, words, and bytes:

$ echo This is a test of the emergency broadcast system | wc Report counts
1 9 49

4.4 Counting Lines, Words, and Characters | 77

Request a subset of those results with the -c (bytes), -1 (lines), and -w (words)
options:

$ echo Testing one two three | wc -c Count bytes
22

$ echo Testing one two three | wc -1 Count lines

1

$ echo Testing one two three | wc -w Count words

4

The -c option originally stood for character count, but with multibyte character-set
encodings, such as UTF-8, in modern systems, bytes are no longer synonymous
with characters, so POSIX introduced the -m option to count multibyte characters.
For 8-bit character data, it is the same as -c.

Although wc is most commonly used with input from a pipeline, it also accepts com-
mand-line file arguments, producing a one-line report for each, followed by a sum-
mary report:

$ wc /etc/passwd /etc/group Count data in two files

26 68 1631 /etc/passwd

10376 10376 160082 /etc/group

10402 10444 161713 total
Modern versions of wc are locale-aware: set the environment variable LC_CTYPE to the
desired locale to influence wc’s interpretation of byte sequences as characters and
word separators.

In Chapter 5, we will develop a related tool, wf, to report the frequency of occur-
rence of each word.

4.5 Printing

Compared to computers, printers are slow devices, and because they are commonly
shared, it is generally undesirable for users to send jobs directly to them. Instead,
most operating systems provide commands to send requests to a print daemon” that
queues jobs for printing, and handles printer and queue management. Print com-
mands can be handled quickly because printing is done in the background when the
needed resources are available.

Printing support in Unix evolved into two camps with differing commands but
equivalent functionality, as summarized in Table 4-2. Commercial Unix systems and
GNU/Linux usually support both camps, whereas BSD systems offer only the Berke-
ley style. POSIX specifies only the 1p command.

* A daemon (pronounced dee-mon) is a long-running process that provides a service, such as accounting, file
access, login, network connection, printing, or time of day.

78 | Chapter4: TextProcessing Tools

Table 4-2. Printing commands

Berkeley System V Purpose

lpr 1p Send files to print queue
lprm cancel Remove files from print queue
1pq lpstat Report queue status

Here is an example of their use, first with the Berkeley style:

$ lpr -Plcb102 sample.ps Send PostScript file to print queue Icb102

$ 1pq -Plcb102 Ask for print queue status
1cb102 is ready and printing

Rank Owner Job File(s) Total Size

active jones 81352 sample.ps 122888346 bytes

$ lprm -Plcb102 81352 Stop the presses! Kill that huge job
and then with the System V style:

$ 1p -d lcb102 sample.ps Send PostScript file to print queue Icb102
request id is 1cb102-81355 (1 file(s))

$ lpstat -t lcb102 Ask for print queue status
printer 1cb102 now printing lcb102-81355

$ cancel lcb102-81355 Whoops! Don't print that job!

1p and 1pr can, of course, read input from standard input instead of from command-
line files, so they are commonly used at the end of a pipeline.

System management can make a particular single queue the system default so that
queue names need not be supplied when the default is acceptable. Individual users
can set an environment variable, PRINTER (Berkeley) or LPDEST (System V), to select a
personal default printer.

Print queue names are site-specific: a small site might just name the queue printer,
and make it the default. Larger sites might pick names that reflect location, such as a
building abbreviation and room number, or that identify particular printer models or
capabilities, such as bw for a black-and-white printer and color for the expensive one.

Unfortunately, with modern networked intelligent printers, the lprm, cancel, lpq,
and lpstat commands are much less useful than they once were: print jobs arrive
quickly at the printer and appear to the printer daemon to have been printed already
and are thus deleted from the print queue, even though the printer may still be hold-
ing them in memory or in a filesystem while other print jobs are still being pro-
cessed. At that point, the only recourse is to use the printer’s control panel to cancel
an unwanted job.

4.5 Printing | 79

4.5.1 Evolution of Printing Technology

Printer technology has changed a lot since Unix was first developed. The industry
has moved from large impact printers and electric typewriters that formed characters
by hammering a ribbon and paper against a metal character shape, to electrostatic,
dot-matrix, inkjet, and laser printers that make characters from tiny dots.

Advances in microprocessors allowed the implementation inside the printer of sim-
ple command languages like Hewlett-Packard Printer Command Language (PCL)
and HP Graphics Language(HPGL), and complete programming languages—
notably, Adobe PostScript. Adobe Portable Document Format (PDF) is a descendant
of PostScript that is more compact, but not programmable. PDF offers additional
features like color transparency, digital signatures, document-access control, encryp-
tion, enhanced data compression, and page independence. That last feature allows
high-performance printers to rasterize pages in parallel, and PDF viewers to quickly
display any requested page.

The newest generation of devices combines printing, copying, and scanning into a
single system with a disk filesystem and network access, support for multiple page-
description languages and graphics file formats, and, in at least one case, GNU/
Linux as the embedded operating system.

Unfortunately, Unix printing software has not adapted rapidly enough to these
improvements in printing technology, and command-level support for access to
many features of newer printers remains poor. Two notable software projects
attempt to remedy this situation: Common UNIX Printing System” (CUPS), and 1pr
next generation® (LPRng). Many large Unix sites have adopted one or the other; both
provide familiar Unix printing commands, but with a lot more options. Both fully
support printing of PostScript and PDF files: when necessary, they use the Aladdin or
GNU ghostscript interpreter to convert such files to other formats needed by less-
capable printers. CUPS also supports printing of assorted graphics image file for-
mats, and n-up printing to place several reduced page images on a single sheet.

4.5.2 Other Printing Software

Despite its name, the venerable pr command does not print files, but rather, filters
data in preparation for printing. In the simplest case, pr produces a page header
timestamped with the file’s modification time, or if input is from a pipe, with the
current time, followed by the filename (empty for piped input) and a page number,
with a fixed number (66) of lines per page. The intent was that:

pr file(s) | 1p

* Available at http://www.cups.org/ and documented in a book listed in the Bibliography.
T Available at http://lwww.Iprng.org/.

80 | Chapter4: TextProcessing Tools

would print nice listings. However, that simplicity has not worked since the old
mechanical printers of the 1970s were retired. Default font sizes and line spacing
vary between printers, and multiple paper sizes are in common use.

pr
Usage
pr [options | [file(s)]
Purpose
Paginate text files for printing.

Major options

-cn
Produce n-column output. This option can be abbreviated to -n (e.g., -4
instead of -c4).

-f
Prefix each page header after the first with an ASCII formfeed character. This
option is called -F on FreeBSD, NetBSD, and Mac OS X. OpenBSD recog-
nizes both options. POSIX has both, but assigns them slightly different mean-
ings.

-h althdr
Use the string althdr to replace the filename in the page header.

-1n
Produce n-line pages. Some implementations include page header and trailer
lines in the count, whereas others do not.

-on
Offset output lines with n spaces.

-t
Suppress page headers.

-wn
Produce lines of at most n characters. For single-column output, wrap longer
lines onto additional lines as needed; otherwise, for multicolumn output,
truncate long lines to fit.

Behavior

pr reads the specified files, or standard input if no files are given, and writes the
paginated data on standard output.

Caveats
pr implementations vary considerably in supported options and output format-
ting; the GNU coreutils version provides a way to get consistent behavior on all
systems.

4.5 Printing | 81

Instead, you generally have to experiment with setting the output page length with
the -1 option, and often the page width with the -w option and a text offset with the
-0 option. It is also essential to add the -f option (-F on some systems) to output an
ASCII formfeed control character at the start of every page header after the first, to
guarantee that each header starts a new page. The reality is that you generally have to
use something like this:

pr -f -160 -010 -w65 file(s) | 1p

If you use a different printer later, you may need to change those numeric parame-
ters. This makes it hard to use pr reliably in portable shell scripts.

There is one feature of pr that is often convenient: the -cn option requests n-column
output. If you combine that with the -t option to omit the page headers, you can
produce nice multicolumn listings, such as this example, which formats 26 words
into five columns:

$ sed -n -e 19000,19025p /usr/dict/words | pr -c5 -t

reproach repugnant request reredos resemblant
reptile repulsion require rerouted resemble
reptilian repulsive requisite rerouting resent
republic reputation requisition rescind resentful
republican repute requited rescue reserpine
repudiate

If the column width is too small, pr silently truncates data to prevent column over-
lap. We can format the same 26 words into 10 (truncated) columns like this:

$ sed -n -e 19000,19025p /usr/dict/words | pr -c10 -t

reproa republ repugn reputa requir requit rerout rescue resemb resent

reptil republ repuls repute requis reredo rescin resemb resent reserp

reptil repudi repuls reques requis rerout
pr has a lot of options, and historically, there was considerable variation among Unix
systems in those options, and in the output format and number of lines per page. We
recommend using the version from the GNU coreutils package, since it gives a uni-
form interface everywhere, and more options than most other versions. Consult the
manual pages for pr(1) for the details.

Although some PostScript printers accept plain text, many do not. Typesetting sys-
tems like TEX and troff can turn marked-up documents into PostScript and/or PDF
page images. If you have just a plain text file, how do you print it? The Unix printing
system invokes suitable filters to do the conversion for you, but you then do not have
any control over its appearance. The answer is text-to-PostScript filters like a2ps,”
Iptops,T or on Sun Solaris only, mp. Use them like this:

a2ps file > file.ps Make a PostScript listing of file
azps file | 1p Print a PostScript listing of file

* Available at ftp:/ftp.gnu.org/gnu/a2ps/.
1 Available at http://'www.math.utah.edu/pub/lptops/.

82 | Chapter4: TextProcessing Tools

lptops file > file.ps Make a PostScript listing of file

lptops file | 1p Print a PostScript listing of file
mp file > file.ps Make a PostScript listing of file
mp file | 1p Print a PostScript listing of file

All three have command-line options to choose the font, specify the typesize, supply
or suppress page headers, and select multicolumn output.

BSD, IBM AIX, and Sun Solaris systems have vgrind,” which filters files in a variety of
programming languages, turning them into troff input, with comments in italics,
keywords in bold, and the current function noted in the margin; that data is then
typeset and output as PostScript. A derivative called tgrindt does a similar job, but
with more font choices, line numbering, indexing, and support for many more pro-
gramming languages. tgrind produces TEX input that readily leads to PostScript and
PDF output. Figure 4-1 shows a sample of its output. Both programs are easy to use
for printing of typeset program listings:

$ tgrind -p hello.c Typeset and print hello.c
$ tgrind -i 1 -fn Bookman -p hello.c Print the listing shown in Figure 4-1
$ vgrind hello.c | 1lp Typeset and print hello.c

4.6 Extracting the First and Last Lines

It is sometimes useful to extract just a few lines from a text file—most commonly,
lines near the beginning or the end. For example, the chapter titles for the XML files
for this book are all visible in the first half-dozen lines of each file, and a peek at the
end of job-log files provides a summary of recent activity.

Both of these operations are easy. You can display the first n records of standard
input or each of a list of command-line files with any of these:

head -n n [file(s)]
head -n [file(s)]
awk 'FNR <= n' [file(s)]
sed -e nq [file(s)]

sed nq [file(s)]

POSIX requires a head option of -n 3 instead of -3, but every implementation that we
tested accepts both.

* Available at http://lwww.math.utah.edu/pub/vgrind/.
T Available at http://'www.math.utah.edu/pub/tgrind).

4.6 Extracting the Firstand Last Lines | 83

(hellc

#include <stdio.h>
#include <stdlib.h>

const char *hello(void);

const char *world(void);

int

main(void) me

© 0N O g W N =

—_
o

(void)printf(”¢s, ¢s\n", hello(), world();
return (EXIT SUCCESS); /* use ISO Standard C exit code

—
N =

}

const char *
hello(void) he
{

}

const char *
world(void) WOl
{

—
=W

—_ e
N o G

return ("hello");

N N NN = =
W N = O © ®

return ("world");

N
[N
—

Linenumber Index

19:18 Apr 19 2004 Page 1 of he

Figure 4-1. tgrind typesetting of a famous C program
When there is only a single edit command, sed allows the -e option to be omitted.
It is not an error if there are fewer than 7 lines to display.
The last n lines can be displayed like this:
tail -nn [file]

tail -n [file]

84 | Chapter4: TextProcessing Tools

As with head, POSIX specifies only the first form, but both are accepted on all of our
systems.

Curiously, although head handles multiple files on the command line, traditional and
POSIX tail do not. That nuisance is fixed in all modern versions of tail.

In an interactive shell session, it is sometimes desirable to monitor output to a file,
such as a log file, while it is still being written. The -f option asks tail to show the
specified number of lines at the end of the file, and then to go into an endless loop,
sleeping for a second before waking up and checking for more output to display.
With -f, tail terminates only when you interrupt it, usually by typing Ctrl-C:

$ tail -n 25 -f /var/log/messages Watch the growth of the system message log

~C Ctrl-C stops tail

Since tail does not terminate on its own with the —f option, that option is unlikely
to be of use in shell scripts.

There are no short and simple alternatives to tail with awk or sed, because the job
requires maintaining a history of recent records.

Although we do not illustrate them in detail here, there are a few other commands
that we use in small examples throughout the book, and that are worth adding to
your toolbox:

* dd copies data in blocks of user-specified size and number. It also has some lim-
ited ability to convert between uppercase and lowercase, and between ASCII and
EBCDIC. For character-set conversions, however, the modern, and POSIX-stan-
dard, iconv command for converting files from one code set to another has much
more flexibility.

* file matches a few selected leading bytes of the contents of each of its argument
files against a pattern database and prints a brief one-line report on standard
output of its conclusions for each of them. Most vendor-provided implementa-
tions of file recognize 100 or so types of files, but are unable to classify binary
executables and object files from other Unix flavors, or files from other operat-
ing systems. There is a much better open-source version,” however, that has
enjoyed the benefits of many contributors: it can recognize more than 1200 file
types, including many from non-Unix operating systems.

* od, the octal dump command, prints byte streams in ASCII, octal, and hexadeci-
mal. Command-line options can set the number of bytes read and can select the
output format.

* strings searches its input for sequences of four or more printable characters
ending with a newline or a NUL, and prints them on standard output. It is often

* Available at ftp://ftp.astron.com/publfile/.

4.6 Extracting the Firstand Last Lines | 85

useful for peeking inside binary files, such as compiled programs or datafiles.
Desktop-software, image, and sound files sometimes contain useful textual data
near the beginning, and GNU head provides the handy -c option to limit the out-
put to a specified number of characters:

$ strings -a horneoi.jpg | head -c 256 | fmt -w 65 Examine astronomical image
JFIF Photoshop 3.0 8BIM Comet Hale-Bopp shows delicate

filaments in it's blue ion tail in this exposure made Monday

morning 3/17/97 using 12.5 inch F/4 Newtonian reflecting

telescope. The 15 minute exposure was made on Fujicolor SG-800

Plus film. 8BIM 8BI

4.7 Summary

This chapter covered about 30 utilities for processing text files. Collectively, they are
a powerful set of tools for writing shell scripts. The most important, and most com-
plex, is sort. The fmt, unig, and wc commands are often just the tools you need in a
pipeline to simplify or summarize data. When you need to get a quick overview of a
collection of unfamiliar files, file, head, strings, and tail are often a better choice
than visiting each file in turn with a text editor. a2ps, tgrind, and vgrind can make
listings of your programs, including shell scripts, easier to read.

86 | Chapter4: TextProcessing Tools

CHAPTER 5
Pipelines Can Do Amazing Things

In this chapter, we solve several relatively simple text processing jobs. What’s inter-
esting about all the examples here is that they are scripts built from simple pipelines:
chains of one command hooked into another. Yet each one accomplishes a signifi-
cant task.

When you tackle a text processing problem in Unix, it is important to keep the Unix
tool philosophy in mind: ask yourself how the problem can be broken down into
simpler jobs, for each of which there is already an existing tool, or for which you can
readily supply one with a few lines of a shell program or with a scripting language.

5.1 Extracting Data from Structured Text Files

Most administrative files in Unix are simple flat text files that you can edit, print, and
read without any special file-specific tools. Many of them reside in the standard
directory, /etc. Common examples are the password and group files (passwd and
group), the filesystem mount table (fstab or vfstab), the hosts file (hosts), the default
shell startup file (profile), and the system startup and shutdown shell scripts, stored
in the subdirectory trees rc0.d, rc1.d, and so on, through rc6.d. (There may be other
directories as well.)

File formats are traditionally documented in Section 5 of the Unix manual, so the
command man 5 passwd provides information about the structure of /etc/passwd.”

Despite its name, the password file must always be publicly readable. Perhaps it
should have been called the user file because it contains basic information about
every user account on the system, packed together in one line per account, with
fields separated by colons. We described the file’s format in “Text File Conventions”
[3.3.1]. Here are some typical entries:

jones:*:32713:899:Adrian W. Jones/0SD211/555-0123:/home/Jjones:/bin/ksh
dorothy:*:123:30:Dorothy Gale/KNS321/555-0044:/home/dorothy:/bin/bash

* On some systems, file formats are in Section 7; thus, you might need to use man 7 passwd instead.

87

toto:*:1027:18:Toto Gale/KNS322/555-0045:/home/toto:/bin/tcsh
ben:*:301:10:Ben Franklin/0SD212/555-0022:/home/ben:/bin/bash
jhancock:*:1457:57:John Hancock/SIG435/555-0099:/home/jhancock:/bin/bash
betsy:*:110:20:Betsy Ross/BMD17/555-0033:/home/betsy:/bin/ksh
tj:*:60:33:Thomas Jefferson/BMD19/555-0095:/home/tj:/bin/bash
george:*:692:42:George Washington/BST999/555-0001:/home/george:/bin/tcsh

To review, the seven fields of a password-file entry are:

1. The username

2. The encrypted password, or an indicator that the password is stored in a sepa-
rate file

3. The numeric user ID
4. The numeric group ID

5. The user’s personal name, and possibly other relevant data (office number, tele-
phone number, and so on)

6. The home directory
7. The login shell

All but one of these fields have significance to various Unix programs. The one that
does not is the fifth, which conventionally holds user information that is relevant
only to local humans. Historically, it was called the gecos field, because it was added
in the 1970s at Bell Labs when Unix systems needed to communicate with other
computers running the General Electric Comprehensive Operating System, and some
extra information about the Unix user was required for that system. Today, most
sites use it just to record the personal name, so we simply call it the name field.

For the purposes of this example, we assume that the local site records extra infor-
mation in the name field: a building and office number identifier (OSD211 in the
first sample entry), and a telephone number (555-0123), separated from the personal
name by slashes.

One obvious useful thing that we can do with such a file is to write some software to
create an office directory. That way, only a single file, /etc/passwd, needs to be kept
up-to-date, and derived files can be created when the master file is changed, or more
sensibly, by a cron job that runs at suitable intervals. (We will discuss cron in
“crontab: Rerun at Specified Times” [13.6.4].)

For our first attempt, we make the office directory a simple text file, with entries like
this:

Franklin, Ben *0SD212¢555-0022
Gale, Dorothy *KNS321¢555-0044

where ¢ represents an ASCII tab character. We put the personal name in conven-
tional directory order (family name first), padding the name field with spaces to a

88 | Chapter5: Pipelines Can Do Amazing Things

convenient fixed length. We prefix the office number and telephone with tab charac-
ters to preserve some useful structure that other tools can exploit.

Scripting languages, such as awk, were designed to make such tasks easy because they
provide automated input processing and splitting of input records into fields, so we
could write the conversion job entirely in such a language. However, we want to
show how to achieve the same thing with other Unix tools.

For each password file line, we need to extract field five, split it into three subfields,
rearrange the names in the first subfield, and then write an office directory line to a
sorting process.

awk and cut are convenient tools for field extraction:

eoo | awk -F: '{ print $5 }' | ...

... | cut -d: -f5 | ...
There is a slight complication in that we have two field-processing tasks that we
want to keep separate for simplicity, but we need to combine their output to make a
directory entry. The join command is just what we need: it expects two input files,
each ordered by a common unique key value, and joins lines sharing a common key
into a single output line, with user control over which fields are output.

Since our directory entries contain three fields, to use join we need to create three
intermediate files containing the colon-separated pairs key:person, key:office, and
key:telephone, one pair per line. These can all be temporary files, since they are
derived automatically from the password file.

What key do we use? It just needs to be unique, so it could be the record number in
the original password file, but in this case it can also be the username, since we know
that usernames are unique in the password file and they make more sense to humans
than numbers do. Later, if we decide to augment our directory with additional infor-
mation, such as job title, we can create another nontemporary file with the pair key:
jobtitle and add it to the processing stages.

Instead of hardcoding input and output filenames into our program, it is more flexi-
ble to write the program as a filter so that it reads standard input and writes stan-
dard output. For commands that are used infrequently, it is advisable to give them
descriptive, rather than short and cryptic, names, so we start our shell program like
this:

#! /bin/sh

Filter an input stream formatted like /etc/passwd,
and output an office directory derived from that data.

#

Usage:

passwd-to-directory < /etc/passwd > office-directory-file

ypcat passwd | passwd-to-directory > office-directory-file

niscat passwd.org dir | passwd-to-directory > office-directory-file

5.1 Extracting Data from Structured Text Files | 89

Since the password file is publicly readable, any data derived from it is public as well,
so there is no real need to restrict access to our program’s intermediate files. How-
ever, because all of us at times have to deal with sensitive data, it is good to develop
the programming habit of allowing file access only to those users or processes that
need it. We therefore reset the umask (see “Default permissions” in Appendix B) as
the first action in our program:

umask 077 Restrict temporary file access to just us

For accountability and debugging, it is helpful to have some commonality in tempo-
rary filenames, and to avoid cluttering the current directory with them: we name
them with the prefix /tmp/pd.. To guard against name collisions if multiple instances
of our program are running at the same time, we also need the names to be unique:
the process number, available in the shell variable $$, provides a distinguishing suf-
fix. (This use of $$ is described in more detail in Chapter 10.) We therefore define
these shell variables to represent our temporary files:

PERSON=/tmp/pd.key.person.$$ Unique temporary filenames

OFFICE=/tmp/pd.key.office.$$

TELEPHONE=/tmp/pd.key.telephone.$$

USER=/tmp/pd.key.user.$$
When the job terminates, either normally or abnormally, we want the temporary files
to be deleted, so we use the trap command:

trap "exit 1" HUP INT PIPE QUIT TERM

trap "rm -f $PERSON $OFFICE $TELEPHONE $USER" EXIT
During development, we can just comment out the second trap, preserving tempo-
rary files for subsequent examination. (The trap command is described in “Trapping
Process Signals” [13.3.2]. For now, it’s enough to understand that when the script
exits, the trap command arranges to automatically run rm with the given arguments.)

We need fields one and five repeatedly, and once we have them, we don’t require the
input stream from standard input again, so we begin by extracting them into a tem-
porary file:

awk -F: '{ print $1 ":" $5 }' > $USER This reads standard input

We make the key:person pair file first, with a two-step sed program followed by a
simple line sort; the sort command is discussed in detail in “Sorting Text” [4.1].

sed -e 's=/.*=="\
—e s\ T) NG RN) N[N TF\V)=\1:\3, \2=" <$USER | sort >$PERSON

The script uses = as the separator character for sed’s s command, since both slashes
and colons appear in the data. The first edit strips everything from the first slash to
the end of the line, reducing a line like this:

jones:Adrian W. Jones/0SD211/555-0123 Input line

90 | Chapter5: Pipelines Can Do Amazing Things

to this:
jones:Adrian W. Jones Result of first edit

The second edit is more complex, matching three subpatterns in the record. The first
part, "\([*:]*\), matches the username field (e.g., jones). The second part, \(.*\)3,
matches text up to a space (e.g., AdrianTW.3; the O stands for a space character).
The last part, \([*3]1*\), matches the remaining nonspace text in the record (e.g.,
Jones). The replacement text reorders the matches, producing something like
Jones,JAdrian W. The result of this single sed command is the desired reordering:

jones:Jones, Adrian W. Printed result of second edit
Next, we make the key:office pair file:

sed -e "s=M\([Ac]RN)[A/TRAN([M/]FN) /. %$=\1:\2=" < $USER | sort > $OFFICE
The result is a list of users and offices:

jones:0SD211

The key:telephone pair file creation is similar: we just need to adjust the match
pattern:
sed -e "s=M\([A]EN)[A/TR/[N TR/]F\)=\1:\2=" < $USER | sort > $TELEPHONE

At this stage, we have three separate files, each of which is sorted. Each file consists
of the key (the username), a colon, and the particular data (personal name, office,
telephone number). The $PERSON file’s contents look like this:

ben:Franklin, Ben
betsy:Ross, Betsy

The $0FFICE file has username and office data:

ben:0SD212
betsy:BMD17

The $TELEPHONE file records usernames and telephone numbers:

ben:555-0022
betsy:555-0033

By default, join outputs the common key, then the remaining fields of the line from
the first file, followed by the remaining fields of the line from the second file. The
common key defaults to the first field, but that can be changed by a command-line
option: we don’t need that feature here. Normally, spaces separate fields for join,
but we can change the separator with its -t option: we use it as -t:.

The join operations are done with a five-stage pipeline, as follows:

1. Combine the personal information and the office location:
join -t: $PERSON $OFFICE | ...

5.1 Extracting Data from Structured Text Files | 91

The results of this operation, which become the input to the next stage, look like
this:

ben:Franklin, Ben:0SD212
betsy:Ross, Betsy:BMD17

. Add the telephone number:

. | join -t: - $TELEPHONE | ...
The results of this operation, which become the input to the next stage, look like
this:

ben:Franklin, Ben:0SD212:555-0022
betsy:Ross, Betsy:BMD17:555-0033

. Remove the key (which is the first field), since it’s no longer needed. This is most

easily done with cut and a range that says “use fields two through the end,” like
so:

coo | ocut -d: - 2-] ...
The results of this operation, which become the input to the next stage, look like
this:

Franklin, Ben:0SD212:555-0022
Ross, Betsy:BMD17:555-0033

. Re-sort the data. The data was previously sorted by login name, but now things

need to be sorted by personal last name. This is done with sort:

... | sort -t: -k1,1 -k2,2 -k3,3 | ...
This command uses a colon to separate fields, sorting on fields 1, 2, and 3, in
order. The results of this operation, which become the input to the next stage,

look like this:

Franklin, Ben:0SD212:555-0022
Gale, Dorothy:KNS321:555-0044

. Finally, reformat the output, using awk’s printf statement to separate each field

with tab characters. The command to do this is:
coo | awk -F: '{ printf("%-39s\t%s\t%s\n", $1, $2, $3) }'

For flexibility and ease of maintenance, formatting should always be left until
the end. Up to that point, everything is just text strings of arbitrary length.

Here’s the complete pipeline:

join -t: $PERSON $OFFICE |
join -t: - $TELEPHONE |
cut -d: -f 2- |
sort -t: -k1,1 -k2,2 -k3,3 |
awk -F: '{ printf("%-39s\t%s\t%s\n", $1, $2, $3) }'

92

Chapter5: Pipelines Can Do Amazing Things

The awk printf statement used here is similar enough to the shell printf command
that its meaning should be clear: print the first colon-separated field left-adjusted in a
39-character field, followed by a tab, the second field, another tab, and the third
field. Here are the full results:

Franklin, Ben *0SD212¢555-0022
Gale, Dorothy *KNS321¢555-0044
Gale, Toto *KNS322¢555-0045
Hancock, John *51G435¢555-0099
Jefferson, Thomas *BMD19¢555-0095

Jones, Adrian W. *0SD211#555-0123
Ross, Betsy *BMD17555-0033

Washington, George *BST999¢555-0001

That is all there is to it! Our entire script is slightly more than 20 lines long, exclud-
ing comments, with five main processing steps. We collect it together in one place in
Example 5-1.

Example 5-1. Creating an office directory

#! /bin/sh

Filter an input stream formatted like /etc/passwd,

and output an office directory derived from that data.

#

Usage:

passwd-to-directory < /etc/passwd > office-directory-file

ypcat passwd | passwd-to-directory > office-directory-file

niscat passwd.org dir | passwd-to-directory > office-directory-file

umask 077

PERSON=/tmp/pd.key.person.$$
OFFICE=/tmp/pd.key.office.$$
TELEPHONE=/tmp/pd.key.telephone.$$
USER=/tmp/pd.key.user.$$

trap "exit 1" HUP INT PIPE QUIT TERM
trap "rm -f $PERSON $OFFICE $TELEPHONE $USER" EXIT

awk -F: '{ print $2 ":" $5 }' > $USER
sed -e 's=/.*=="\
—e s NG RN) N[N TF\V)=\1:\3, \2=" < $USER | sort > $PERSON

sed -e "s=A\([APR\) S [A/TRAN([MTRN) /. ¥$=\1:\2=" < $USER | sort > $OFFICE
sed -e "s=M\([A]EN)[A/]R/[N RN/ TR\)=\1:\2=" < $USER | sort > $TELEPHONE

join -t: $PERSON $OFFICE |
join -t: - $TELEPHONE |
cut -d: -f 2- |
sort -t: -k1,1 -k2,2 -k3,3
awk -F: '{ printf("%-39s\t%s\t%s\n", $1, $2, $3) }'

5.1 Extracting Data from Structured Text Files | 93

The real power of shell scripting shows itself when we want to modify the script to
do a slightly different job, such as insertion of the job title from a separately main-
tained key:jobtitle file. All that we need to do is modify the final pipeline to look
something like this:

join -t: $PERSON /etc/passwd.job-title | Extra join with job title

join -t: - $OFFICE |
join -t: - $TELEPHONE |
cut -d: -f 2- |
sort -t: -ki,1 -k3,3 -k4,4 | Modify sort command
awk -F: '{ printf("%-39s\t%-23s\t%s\t%s\n",
$1, $2, $3, $4) }' And formatting command

The total cost for the extra directory field is one more join, a change in the sort
fields, and a small tweak in the final awk formatting command.

Because we were careful to preserve special field delimiters in our output, we can
trivially prepare useful alternative directories like this:

passwd-to-directory < /etc/passwd | sort -t'e' -k2,2 > dir.by-office

passwd-to-directory < /etc/passwd | sort -t'e' -k3,3 > dir.by-telephone
As usual, * represents an ASCII tab character.

A critical assumption of our program is that there is a unique key for each data
record. With that unique key, separate views of the data can be maintained in files as
key:value pairs. Here, the key was a Unix username, but in larger contexts, it could
be a book number (ISBN), credit card number, employee number, national retire-
ment system number, part number, student number, and so on. Now you know why
we get so many numbers assigned to us! You can also see that those handles need
not be numbers: they just need to be unique text strings.

5.2 Structured Data for the Web

The immense popularity of the World Wide Web makes it desirable to be able to
present data like the office directory developed in the last section in a form that is a
bit fancier than our simple text file.

Web files are mostly written in a markup language called HyperText Markup Lan-
guage (HTML). This is a family of languages that are specific instances of the Stan-
dard Generalized Markup Language (SGML), which has been defined in several ISO
standards since 1986. The manuscript for this book was written in DocBook/XML,
which is also a specific instance of SGML. You can find a full description of HTML
in HTML & XHTML: The Definitive Guide (O’Reilly).”

* In addition to this book (listed in the Bibliography), hundreds of books on SGML and derivatives are listed at
http://'www.math.utah.edu/pub/tex/bib/sgml.html and http://www.math.utah.edu/pub/tex/bib/sgmI2000.html.

94 | Chapter5: Pipelines Can Do Amazing Things

A Digression on Databases

Most commercial databases today are constructed as relational databases: data is
accessible as key:value pairs, and join operations are used to construct multicolumn
tables to provide views of selected subsets of the data. Relational databases were first
proposed in 1970 by E. F. Codd,a who actively promoted them, despite initial database
industry opposition that they could not be implemented efficiently. Fortunately, clever
programmers soon figured out how to solve the efficiency problem. Codd’s work is so
important that, in 1981, he was given the prestigious ACM Turing Award, the closest
thing in computer science to the Nobel Prize.

Today, there are several ISO standards for the Structured Query Language (SQL), mak-
ing vendor-independent database access possible, and one of the most important SQL
operations is join. Hundreds of books have been published about SQL; to learn more,
pick a general one like SQL in a Nutshell.b Our simple office-directory task thus has an
important lesson in it about the central concept of modern relational databases, and
Unix software tools can be extremely valuable in preparing input for databases, and in
processing their output.

a E.F.Codd, A Relational Model of Data for Large Shared Data Banks, Communications of the ACM, 13(6) 377-387, June
(1970), and Relational Database: A Practical Foundation for Productivity, Communications of the ACM, 25(2) 109-117,

February (1982) (Turing Award lecture).

b By Kevin Kline and Daniel Kline, 0'Reilly & Associates, 2000, ISBN 1-56592-744-3. See also http://www.math.utah.edu/pub/tex/

bib/sqlbooks.html for an extensive list of SQL books.

For the purposes of this section, we need only a tiny subset of HTML, which we
present here in a small tutorial. If you are already familiar with HTML, just skim the

next page or two.

Here is a minimal standards-conformant HTML file produced by a useful tool writ-

ten by one of us:”

$ echo Hello, world. | html-pretty

<l-- -*-html-*- -->

<l-- Prettyprinted by html-pretty flex version 1.01 [25-Aug-2001] -->
<!-- on Wed Jan 8 12:12:42 2003 -->

<l-- for Adrian W. Jones (jones@example.com) -->

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<TITLE>
<!-- Please supply a descriptive title here -->

</TITLE>
<!-- Please supply a correct e-mail address here -->
<LINK REV="made" HREF="mailto:jones@example.com">

* Available at http://lwww.math.utah.edu/pub/sgml/.

5.2 Structured Data for the Web

95

</HEAD>
<BODY>
Hello, world.
</BODY>
</HTML>

The points to note in this HTML output are:

HTML comments are enclosed in <!-- and -->.

Special processor commands are enclosed in <! and »>: here, the DOCTYPE com-
mand tells an SGML parser what the document type is and where to find its
grammar file.

Markup is supplied by angle-bracketed words, called tags. In HTML, lettercase
is not significant in tag names: html-pretty normally uppercases tag names for
better visibility.

Markup environments consist of a begin tag, <NAME>, and an end tag, </NAME>,
and for many tags, environments can be nested within each other according to
rules defined in the HTML grammars.

An HTML document is structured as an HTML object containing one HEAD and
one BODY object.

Inside the HEAD, a TITLE object defines the document title that web browsers dis-
play in the window titlebar and in bookmark lists. Also inside the HEAD, the LINK
object generally carries information about the web-page maintainer.

The visible part of the document that browsers show is the contents of the BODY.

Whitespace is not significant outside of quoted strings, so we can use horizontal
and vertical spacing liberally to emphasize the structure, as the HTML
prettyprinter does.

Everything else is just printable ASCII text, with three exceptions. Literal angle
brackets must be represented by special encodings, called entities, that consist of
an ampersand, an identifier, and a semicolon: &1t; and >. Since ampersand
starts entities, it has its own literal entity name: 8amp;. HTML supports a modest
repertoire of entities for accented characters that cover most of the languages of
Western Europe so that we can write, for example, caf8eacute; du bon
goducirc;t to get café du bon golt.

Although not shown in our minimal example, font style changes are accom-
plished in HTML with B (bold), EM (emphasis), I (italic), STRONG (extra bold), and
TT (typewriter (fixed-width characters)) environments: write bold phrase
to get bold phrase.

To convert our office directory to proper HTML, we need only one more bit of infor-
mation: how to format a table, since that is what our directory really is and we don’t
want to force the use of typewriter fonts to get everything to line up in the browser
display.

96

| Chapter5: Pipelines Can Do Amazing Things

In HTML 3.0 and later, a table consists of a TABLE environment, inside of which are
rows, each of them a table row (TR) environment. Inside each row are cells, called
table data, each a TD environment. Notice that columns of data receive no special
markup: a data column is simply the set of cells taken from the same row position in
all of the rows of the table. Happily, we don’t need to declare the number of rows
and columns in advance. The job of the browser or formatter is to collect all of the
cells, determine the widest cell in each column, and then format the table with col-
umns just wide enough to hold those widest cells.

For our office directory example, we need just three columns, so our sample entry
could be marked up like this:

<TABLE>
<TR>
<TD>
Jones, Adrian W.
</TD>
<TD>
555-0123
</TD>
<TD>
0SD211
</TD>
</TR>

</TABLE>
An equivalent, but compact and hard-to-read, encoding might look like this:

<TABLE>

<TR><TD>Jones, Adrian W.</TD><TD>555-0123</TD><TD>0SD211</TD></TR>

</TABLE>
Because we chose to preserve special field separators in the text version of the office
directory, we have sufficient information to identify the cells in each row. Also,
because whitespace is mostly not significant in HTML files (except to humans), we

need not be particularly careful about getting tags nicely lined up: if that is needed
later, html-pretty can do it perfectly. Our conversion filter then has three steps:

1. Output the leading boilerplate down to the beginning of the document body.
2. Wrap each directory row in table markup.

3. Output the trailing boilerplate.

We have to make one small change from our minimal example: the DOCTYPE com-
mand has to be updated to a later grammar level so that it looks like this:

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN//3.0">

5.2 Structured DatafortheWeb | 97

You don’t have to memorize this: html-pretty has options to produce output in any
of the standard HTML grammar levels, so you can just copy a suitable DOCTYPE com-
mand from its output.

Clearly, most of the work is just writing boilerplate, but that is simple since we can just
copy text from the minimal HTML example. The only programmatic step required is
the middle one, which we could do with only a couple of lines in awk. However, we can
achieve it with even less work using a sed stream-editor substitution with two edit
commands: one to substitute the embedded tab delimiters with </TD><TD>, and a fol-
lowing one to wrap the entire line in <TR><TD>...</TD></TR>. We temporarily assume
that no accented characters are required in the directory, but we can easily allow for
angle brackets and ampersands in the input stream by adding three initial sed steps.
We collect the complete program in Example 5-2.

Example 5-2. Converting an office directory to HTML

#! /bin/sh
Convert a tab-separated value file to grammar-conformant HTML.
#
Usage:
tsv-to-html < infile > outfile
cat << EOFILE Leading boilerplate
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN//3.0">
<HTML>
<HEAD>
<TITLE>
Office directory
</TITLE>
<LINK REV="made" HREF="mailto:$USER@ hostname ">
</HEAD>
<BODY>
<TABLE>
EOFILE
sed -e 's=&=\8amp;=g' \ Convert special characters to entities

-e 's=<=\g<=g' \
-e 's=>=\g>=g' \

-e 's=\t=</TD><TD>=g" \ And supply table markup
-e 's=N*g= <TR><TD>&</TD></TR>="
cat << EOFILE Trailing boilerplate
</TABLE>
</BODY>
</HTML>
EOFILE

The << notation is called a here document. It is explained in more detail in “Addi-
tional Redirection Operators” [7.3.1]. Briefly, the shell reads all lines up to the delim-
iter following the << (EOFILE in this case), does variable and command substitution
on the contained lines, and feeds the results as standard input to the command.

98 | Chapter5: Pipelines Can Do Amazing Things

There is an important point about the script in Example 5-2: it is independent of the
number of columns in the table! This means that it can be used to convert any tab-
separated value file to HTML. Spreadsheet programs can usually save data in such a
format, so our simple tool can produce correct HTML from spreadsheet data.

We were careful in tsv-to-html to maintain the spacing structure of the original
office directory, because that makes it easy to apply further filters downstream.
Indeed, html-pretty was written precisely for that reason: standardization of HTML
markup layout radically simplifies other HTML tools.

How would we handle conversion of accented characters to HTML entities? We
could augment the sed command with extra edit steps like -e 's=é=8eacute;=g", but
there are about 100 or so entities to cater for, and we are likely to need similar substi-
tutions as we convert other kinds of text files to HTML.

It therefore makes sense to delegate that task to a separate program that we can reuse,
either as a pipeline stage following the sed command in Example 5-2, or as a filter
applied later. (This is the “detour to build specialized tools” principle in action.) Such
a program is just a tedious tabulation of substitution commands, and we need one
for each of the local text encodings, such as the various ISO 8859-n code pages men-
tioned in “How Are Files Named?” in Appendix B. We don’t show such a filter com-
pletely here, but a fragment of one in Example 5-3 gives the general flavor. For
readers who need it, we include the complete program for handling the common
case of Western European characters in the ISO 8859-1 encoding with this book’s
sample programs. HTML’s entity repertoire isn’t sufficient for other accented charac-
ters, but since the World Wide Web is moving in the direction of Unicode and XML
in place of ASCII and HTML, this problem is being solved in a different way, by get-
ting rid of character set limitations.

Example 5-3. Fragment of is08859-1-to-html program

#! /bin/sh

Convert an input stream containing characters in ISO 8859-1

encoding from the range 128..255 to HTML equivalents in ASCII.
Characters 0..127 are preserved as normal ASCII.

#

Usage:

i508859-1-to-html infile(s) >outfile

sed \
-e 's= =\ =g' \
-e 's=j=\¡=g' \
-e 's=¢=\¢=g"' \
-e 's=£=\£=g' \

-e 's=l=\ü=g" \
-e 's=y=\8yacute;=g' \
-e 's=p=\þ=g"' \
-e 's=y=\ÿ=g' \
"@"

5.2 Structured Data fortheWeb | 99

Here is a sample of the use of this filter:

$ cat danish Show sample Danish text in ISO 8859-1 encoding
@Pen med den 13 i la af én halve,
og én stor ¢, langs den graske kyst.

$ 1s08859-1-to-html danish Convert text to HTML entities
&0slash;en med åen 18aring; i læ af én halvø,
og én stor ø, langs den gr8aelig;ske kyst.

5.3 (heating at Word Puzzles

Crossword puzzles give you clues about words, but most of us get stuck when we
cannot think of, say, a ten-letter word that begins with a b and has either an x ora z
in the seventh position.

Regular-expression pattern matching with awk or grep is clearly called for, but
what files do we search? One good choice is the Unix spelling dictionary, avail-
able as /usr/dict/words, on many systems. (Other popular locations for this file are
/ust/share/dict/words and /usr/share/lib/dict/words.) This is a simple text file,
with one word per line, sorted in lexicographic order. We can easily create other sim-
ilar-appearing files from any collection of text files, like this:

cat file(s) | tr A-Z a-z | tr -c a-z\' "\n' | sort -u

The second pipeline stage converts uppercase to lowercase, the third replaces nonlet-
ters by newlines, and the last sorts the result, keeping only unique lines. The third
stage treats apostrophes as letters, since they are used in contractions. Every Unix
system has collections of text that can be mined in this way—for example, the for-
matted manual pages in /usr/man/cat*/* and /usr/local/man/cat*/*. On one of our
systems, they supplied more than 1 million lines of prose and produced a list of
about 44,000 unique words. There are also word lists for dozens of languages in vari-
ous Internet archives.”

Let us assume that we have built up a collection of word lists in this way, and we
stored them in a standard place that we can reference from a script. We can then
write the program shown in Example 5-4.

Example 5-4. Word puzzle solution helper

#! /bin/sh

Match an egrep(1)-like pattern against a collection of
word lists.

#

Usage:

*

Available at fip://ftp.ox.ac.uk/pub/wordlists/, ftp://qiclab.scn.rain.com/pub/wordlists/, ftp://ibiblio.org/pub/
docs/books/gutenberg/etext96/pgw*, and http://www.phreak.org/html/wordlists.shtml. A search for “word list”
in any Internet search engine turns up many more.

100 | Chapter5: Pipelines Can Do Amazing Things

Example 5-4. Word puzzle solution helper (continued)
puzzle-help egrep-pattern [word-list-files]

FILES="
/usr/dict/words
/usr/share/dict/words
/usr/share/lib/dict/words
/usr/local/share/dict/words.biology
/usr/local/share/dict/words.chemistry
/usr/local/share/dict/words.general
/usr/local/share/dict/words.knuth
/usr/local/share/dict/words.latin
/usr/local/share/dict/words.manpages
/usr/local/share/dict/words.mathematics
/usr/local/share/dict/words.physics
/usr/local/share/dict/words.roget
/usr/local/share/dict/words.sciences
/usr/local/share/dict/words.unix
/usr/local/share/dict/words.webster

pattern="$1"

egrep -h -1 "$pattern” $FILES 2> /dev/null | sort -u -f

The FILES variable holds the built-in list of word-list files, customized to the local
site. The grep option -h suppresses filenames from the report, the -i option ignores
lettercase, and we discard the standard error output with 2> /dev/null, in case any of
the word-list files don’t exist or they lack the necessary read permission. (This kind
of redirection is described in “File Descriptor Manipulation” [7.3.2].) The final sort
stage reduces the report to just a list of unique words, ignoring lettercase.

Now we can find the word that we were looking for:

$ puzzle-help '"b..... [xz]...$" | fmt
bamboozled Bamboozler bamboozles bdDenizens bdWheezing Belshazzar
botanizing Brontozoum Bucholzite bulldozing

Can you think of an English word with six consonants in a row? Here’s some help:

$ puzzle-help '[~aeiouy]{6}' /usr/dict/words

Knightsbridge

mightn't

oughtn't
If you don’t count y as a vowel, many more turn up: encryption, klystron, porphyry,
syzygy, and so on.

We could readily exclude the contractions from the word lists by a final filter step—
egrep -i '*[a-z]+$'—Dbut there is little harm in leaving them in the word lists.

5.3 Cheating at Word Puzzles | 101

5.4 Word Lists

From 1983 to 1987, Bell Labs researcher Jon Bentley wrote an interesting column in
Communications of the ACM titled Programming Pearls. Some of the columns were
later collected, with substantial changes, into two books listed in the Bibliography. In
one of the columns, Bentley posed this challenge: write a program to process a text
file, and output a list of the n most-frequent words, with counts of their frequency of
occurrence, sorted by descending count. Noted computer scientists Donald Knuth
and David Hanson responded separately with interesting and clever literate pro-
grams,” each of which took several hours to write. Bentley’s original specification was
imprecise, so Hanson rephrased it this way: Given a text file and an integer n, you
are to print the words (and their frequencies of occurrence) whose frequencies of
occurrence are among the n largest in order of decreasing frequency.

In the first of Bentley’s articles, fellow Bell Labs researcher Doug Mcllroy reviewed
Knuth’s program, and offered a six-step Unix solution that took only a couple of
minutes to develop and worked correctly the first time. Moreover, unlike the two
other programs, Mcllroy’s is devoid of explicit magic constants that limit the word
lengths, the number of unique words, and the input file size. Also, its notion of what
constitutes a word is defined entirely by simple patterns given in its first two execut-
able statements, making changes to the word-recognition algorithm easy.

Mcllroy’s program illustrates the power of the Unix tools approach: break a com-
plex problem into simpler parts that you already know how to handle. To solve the
word-frequency problem, Mcllroy converted the text file to a list of words, one per
line (tr does the job), mapped words to a single lettercase (tr again), sorted the list
(sort), reduced it to a list of unique words with counts (unig), sorted that list by
descending counts (sort), and finally, printed the first several entries in the list (sed,
though head would work too).

The resulting program is worth being given a name (wf, for word frequency) and
wrapped in a shell script with a comment header. We also extend Mcllroy’s original
sed command to make the output list-length argument optional, and we modernize
the sort options. We show the complete program in Example 5-5.

Example 5-5. Word-frequency filter

#! /bin/sh

Read a text stream on standard input, and output a list of
the n (default: 25) most frequently occurring words and

their frequency counts, in order of descending counts, on

* Programming Pearls: A Literate Program: A WEB program for common words, Comm. ACM 29(6), 471-483,
June (1986), and Programming Pearls: Literate Programming: Printing Common Words, 30(7), 594-599, July
(1987). Knuth’s paper is also reprinted in his book Literate Programming, Stanford University Center for the
Study of Language and Information, 1992, ISBN 0-937073-80-6 (paper) and 0-937073-81-4 (cloth).

102 | Chapter5: Pipelines Can Do Amazing Things

Example 5-5. Word-frequency filter (continued)
standard output.

#
Usage:
wf [n]
tr -cs A-Za-z\' '"\n' | Replace nonletters with newlines
tr A-Z a-z | Map uppercase to lowercase
sort | Sort the words in ascending order
uniq -c | Eliminate duplicates, showing their counts
sort -ki,1nr -k2 | Sort by descending count, and then by ascending word
sed ${1:-25}q Print only the first n (default: 25) lines; see Chapter 3

POSIX tr supports all of the escape sequences of ISO Standard C. The older X/Open
Portability Guide specification only had octal escape sequences, and the original tr
had none at all, forcing the newline to be written literally, which was one of the criti-
cisms levied at Mcllroy’s original program. Fortunately, the tr command on every
system that we tested now has the POSIX escape sequences.

A shell pipeline isn’t the only way to solve this problem with Unix tools: Bentley gave
a six-line awk implementation of this program in an earlier column" that is roughly
equivalent to the first four stages of Mcllroy’s pipeline.

Knuth and Hanson discussed the computational complexity of their programs, and
Hanson used runtime profiling to investigate several variants of his program to find
the fastest one.

The complexity of Mcllroy’s is easy to identify. All but the sort stages run in a time
that is linear in the size of their input, and that size is usually sharply reduced after
the uniq stage. Thus, the rate-limiting step is the first sort. A good sorting algorithm
based on comparisons, like that in Unix sort, can sort n items in a time proportional
to nlog,n. The logarithm-to-the-base-2 factor is small: for n about 1 million, it is
about 20. Thus, in practice, we expect wf to be a few times slower than it would take
to just copy its input stream with cat.

Here is an example of applying this script to the text of Shakespeare’s most popular
play, Hamlet,T reformatting the output with pr to a four-column display:

$ wf 12 < hamlet | pr -c4 -t -w80

1148 the 671 of 550 a 451 in
970 and 635 1 514 my 419 it
771 to 554 you 494 hamlet 407 that

* Programming Pearls: Associative Arrays, Comm. ACM 28(6), 570-576, June, (1985). This is an excellent
introduction to the power of associative arrays (tables indexed by strings, rather than integers), a common
feature of most scripting languages.

T Available in the wonderful Project Gutenberg archives at http://www.gutenberg.net/.

5.4 WordlLists | 103

The results are about as expected for English prose. More interesting, perhaps, is to
ask how many unique words there are in the play:

$ wf 999999 < hamlet | wc -1
4548

and to look at some of the least-frequent words:

$ wf 999999 < hamlet | tail -n 12 | pr -c4 -t -w80

1 yaw 1 yesterday 1 yielding 1 younger
1 yawn 1 yesternight 1 yon 1 yourselves
1 yeoman 1 yesty 1 yond 1 zone

There is nothing magic about the argument 999999: it just needs to be a number
larger than any expected count of unique words, and the keyboard repeat feature
makes it easy to type.

We can also ask how many of the 4548 unique words were used just once:

$ wf 999999 < hamlet | grep -c '~ *1e'

2634
The * following the digit 1 in the grep pattern represents a tab. This result is surpris-
ing, and probably atypical of most modern English prose: although the play’s vocab-
ulary is large, nearly 58 percent of the words occur only once. And yet, the core
vocabulary of frequently occurring words is rather small:

$ wf 999999 < hamlet | awk '$1 >= 5' | wc -1

740
This is about the number of words that a student might be expected to learn in a
semester course on a foreign language, or that a child learns before entering school.

Shakespeare didn’t have computers to help analyze his writing,” but we can specu-
late that part of his genius was in making most of what he wrote understandable to
the broadest possible audience of his time.

When we applied wf to the individual texts of Shakespeare’s plays, we found that
Hamlet has the largest vocabulary (4548), whereas Comedy of Errors has the smallest
(2443). The total number of unique words in the Shakespeare corpus of plays and
sonnets is nearly 23,700, which shows that you need exposure to several plays to
enjoy the richness of his work. About 36 percent of those words are used only once,
and only one word begins with x: Xanthippe, in Taming of the Shrew. Clearly, there is
plenty of fodder in Shakespeare for word-puzzle enthusiasts and vocabulary analysts!

* Indeed, the only word related to the root of “computer” that Shakespeare used is “computation,” just once
in each of two plays, Comedy of Errors and King Richard III. “Arithmetic” occurs six times in his plays, “cal-
culate” twice, and “mathematics” thrice.

104 | Chapter5: Pipelines Can Do Amazing Things

5.5 TagLists

Use of the tr command to obtain lists of words, or more generally, to transform one
set of characters to another set, as in Example 5-5 in the preceding section, is a
handy Unix tool idiom to remember. It leads naturally to a solution of a problem
that we had in writing this book: how do we ensure consistent markup through
about 50K lines of manuscript files? For example, a command might be marked up
with <command>tr</command> when we talk about it in the running text, but else-
where, we might give an example of something that you type, indicated by the
markup <literal>tr</literal>. A third possibility is a manual-page reference in the
form <emphasis>tr</emphasis>(1).

The taglist program in Example 5-6 provides a solution. It finds all begin/end tag
pairs written on the same line and outputs a sorted list that associates tag use with
input files. Additionally, it flags with an arrow cases where the same word is marked
up in more than one way. Here is a fragment of its output from just the file for a ver-
sion of this chapter:

$ taglist cho5.xml

2 cut command chos5.xml
1 cut emphasis chos.xml <----
2 uniq command chos5.xml
1 uniq emphasis cho5.xml <----
1 vfstab filename chos.xml

The tag listing task is reasonably complex, and would be quite hard to do in most
conventional programming languages, even ones with large class libraries, such as
C++ and Java, and even if you started with the Knuth or Hanson literate programs
for the somewhat similar word-frequency problem. Yet, just nine steps in a Unix
pipeline with by-now familiar tools suffice.

The word-frequency program did not deal with named files: it just assumed a single
data stream. That is not a serious limitation because we can easily feed it multiple
input files with cat. Here, however, we need a filename, since it does us no good to
report a problem without telling where the problem is. The filename is taglist’s sin-
gle argument, available in the script as $1.

1. We feed the input file into the pipeline with cat. We could, of course, eliminate
this step by redirecting the input of the next stage from $1, but we find in com-
plex pipelines that it is clearer to separate data production from data processing.
It also makes it slightly easier to insert yet another stage into the pipeline if the
program later evolves.

cat "$1" | ...

5.5 Taglists | 105

. We apply sed to simplify the otherwise-complex markup needed for web URLs:

... | sed -e 'sttsystemitem *role="url"#URL#tg' \
-e 's#t/systemitem#t/URLH" | ...

This converts tags such as <systemitem role="URL"> and </systemitem> into sim-
pler <URL> and </URL> tags, respectively.

. The next stage uses tr to replace spaces and paired delimiters by newlines:

oo |t U O] "\n\nAn\n\n\n\n" | ...

. At this point, the input consists of one “word” per line (or empty lines). Words

are either actual text or SGML/XML tags. Using egrep, the next stage selects tag-
enclosed words:

co. | egrep S[rolw</t] L.
This regular expression matches tag-enclosed words: a right angle bracket, fol-
lowed by at least one nonangle bracket, followed by a left angle bracket, fol-
lowed by a slash (for the closing tag).

. At this point, the input consists of lines with tags. The first awk stage uses angle

brackets as field separators, so the input <literal>tr</literal> is split into four
fields: an empty field, followed by literal, tr, and /literal. The filename is
passed to awk on the command line, where the -v option sets the awk variable
FILE to the filename. That variable is then used in the print statement, which
outputs the word, the tag, and the filename:

oo | awk -F'[<>]" -v FILE="$1" \
"{ printf("%-31s\t%-15s\t%s\n", $3, $2, FILE) }' | ...

. The sort stage sorts the lines into word order:

co. | sort | ...

. The uniq command supplies the initial count field. The output is a list of

records, where the fields are count, word, tag, file:

ee. | uniq -c | ...

. A second sort orders the output by word and tag (the second and third fields):

... | sort -k2,2 -k3,3 | ...

. The final stage uses a small awk program to filter successive lines, adding a trail-

ing arrow when it sees the same word as on the previous line. This arrow then
clearly indicates instances where words have been marked up differently, and
thus deserve closer inspection by the authors, the editors, or the book-produc-
tion staff:
coo | awk '
print ($2 == Last) ? ($0 " <----") : $0
Last = $2
p

The full program is provided in Example 5-6.

106

| Chapter5: Pipelines Can Do Amazing Things

Example 5-6. Making an SGML tag list

#! /bin/sh -

Read an HTML/SCML/XML file given on the command
line containing markup like <tag>word</tag> and output on
standard output a tab-separated list of

#

count word tag filename

#

sorted by ascending word and tag.

#

Usage:

taglist xml-file

cat "$1" |
sed -e 's#systemitem *role="url"#URL#g' -e 's#/systemitem#/URL#" |
tr " O{I 1" "\n\n\n\n\n\n\n' |
egrep '>[ro]4</" |
awk -F'[<>]" -v FILE="$1" \
"{ printf("%-31s\t%-15s\t%s\n", $3, $2, FILE) }' |

sort |
uniq -c |
sort -k2,2 -k3,3 |
awk '{
print ($2 == Last) ? ($0 " <----") : $0
Last = $2
3

In “Functions” [6.5], we will show how to apply the tag-list operation to multiple
files.

5.6 Summary

This chapter has shown how to solve several text processing problems, none of
which would be simple to do in most programming languages. The critical lessons of
this chapter are:

* Data markup is extremely valuable, although it need not be complex. A unique
single character, such as a tab, colon, or comma, often suffices.

* Pipelines of simple Unix tools and short, often inline, programs in a suitable text
processing language, such as awk, can exploit data markup to pass multiple
pieces of data through a series of processing stages, emerging with a useful
report.

* By keeping the data markup simple, the output of our tools can readily become
input to new tools, as shown by our little analysis of the output of the word-fre-
quency filter, wf, applied to Shakespeare’s texts.

* By preserving some minimal markup in the output, we can later come back and
massage that data further, as we did to turn a simple ASCII office directory into
a web page. Indeed, it is wise never to consider any form of electronic data as

5.6 Summary | 107

final: there is a growing demand in some quarters for page-description lan-
guages, such as PCL, PDF, and PostScript, to preserve the original markup that
led to the page formatting. Word processor documents currently are almost
devoid of useful logical markup, but that may change in the future. At the time
of this writing, one prominent word processor vendor was reported to be consid-
ering an XML representation for document storage. The GNU Project’s gnumeric
spreadsheet, the Linux Documentation Project,” and the OpenOffice.org! office
suite already do that.

Lines with delimiter-separated fields are a convenient format for exchanging data
with more complex software, such as spreadsheets and databases. Although
such systems usually offer some sort of report-generation feature, it is often eas-
ier to extract the data as a stream of lines of fields, and then to apply filters writ-
ten in suitable programming languages to manipulate the data further. For
example, catalog and directory publishing are often best done this way.

* See http://'www.tldp.org/.

T See http://'www.openoffice.org/.

108

| Chapter5: Pipelines Can Do Amazing Things

CHAPTER 6

Variables, Making Decisions, and
Repeating Actions

Variables are essential for nontrivial programs. They maintain values useful as data
and for managing program state. Since the shell is mostly a string processing lan-
guage, there are lots of things you can do with the string values of shell variables.
However, because mathematical operations are essential too, the POSIX shell also
provides a mechanism for doing arithmetic with shell variables.

Control-flow features make a programming language: it’s almost impossible to get
any real work done if all you have are imperative statements. This chapter covers the
shell’s facilities for testing results, and making decisions based on those results, as
well as looping.

Finally, functions let you group task-related statements in one place, making it eas-
ier to perform that task from multiple points within your script.

6.1 Variables and Arithmetic

Shell variables are like variables in any conventional programming language. They
hold values until you need them. We described the basics of shell variable names and
values in “Variables” [2.5.2]. In addition, shell scripts and functions have positional
parameters, which is a fancy term for “command-line arguments.”

Simple arithmetic operations are common in shell scripts; e.g., adding one to a vari-
able each time around a loop. The POSIX shell provides a notation for inline arith-
metic called arithmetic expansion. The shell evaluates arithmetic expressions inside
$((...)), and places the result back into the text of the command.

6.1.1 Variable Assignment and the Environment

Shell variable assignment and usage were covered in “Variables” [2.5.2]. This sec-
tion fills in the rest of the details.

109

Two similar commands provide variable management. The readonly command
makes variables read-only; assignments to them become forbidden. This is a good
way to create symbolic constants in a shell program:

hours_per_day=24 seconds_per_hour=3600 days_per_week=7 Assign values
readonly hours_per day seconds_per hour days_per week Make read-only

export, readonly

Usage
export name[=word] ...
export -p
readonly name[=word] ...
readonly -p

Purpose
export modifies or prints the environment. readonly makes variables unmodifi-
able.
Major options
-p
Print the name of the command and the names and values of all exported
(read-only) variables in such a way as to allow the shell to reread the output
to re-create the environment (read-only settings).
Behavior
With the -p option, both commands print their name and all variables and values
that are exported or read-only, respectively. Otherwise, they apply the appropriate
attribute to the named variables.
Caveats
The versions of /bin/sh on many commercial Unix systems are (sadly) still not
POSIX-compliant. Thus the variable-assignment form of export and readonly
don’t work. For strictest portability, use:

FOO=somevalue
export FOO

BAR=anothervalue
readonly BAR

Much more commonly used is the export command, which puts variables into the
environment. The environment is simply a list of name-value pairs that is available to
every running program. New processes inherit the environment from their parent,
and are able to modify it before creating new child processes of their own. The
export command adds new variables to the environment:

PATH=$PATH: /usr/local/bin Update PATH
export PATH Export it

110 | Chapter6: Variables, Making Decisions, and Repeating Actions

The original Bourne shell required you to use a two-step process; i.e., the assign-
ment and the export or readonly are done separately (as we’ve just shown). The
POSIX standard allows you to do the assignment and command together:

readonly hours per day=24 seconds_per hour=3600 days per week=7

export PATH=$PATH:/usr/local/bin
The export command may also be used to print the current environment:

$ export -p Print current environment
export CDPATH=":/home/tolstoy"

export DISPLAY=":0.0"

export ENV="/home/tolstoy/.kshrc"

export EXINIT="set ai sm"

export FCEDIT="vi"

Variables may be added to a program’s environment without permanently affecting
the environment of the shell or subsequent commands. This is done by prefixing the
assignment to the command name and arguments:

PATH=/bin:/usr/bin awk '..."' file1 file2

This changes the value of PATH only for execution of the single awk command. Any
subsequent commands, however, see the current value of PATH in their environment.

The export command only adds variables to the environment. The env command
may be used to remove variables from a program’s environment, or to temporarily
change environment variable values:

env -1 PATH=$PATH HOME=$HOME LC_ALL=C awk '..." file1l file2

The -i option initializes the environment; i.e., throws away any inherited values,
passing in to the program only those variables named on the command line.

The unset command removes variables and functions from the running shell. By
default it unsets variables, although this can be made explicit with -v:

unset full name Remove the full_name variable
unset -v first middle last Remove the other variables

Use unset -f to remove functions:

who_is on () { Define a function

who | awk '{ print $1 }' | sort -u Generate sorted list of users
}
unset -f who_is on Remove the function

Early versions of the shell didn’t have functions or the unset command. POSIX
added the -f option for removing functions, and then added the -v option for sym-
metry with -f.

6.1 Variables and Arithmetic | 111

env

Usage
env [-i] [var=value ...] [command_name [arguments ...]]
Purpose
To provide fine-grained control over the environment inherited by command_name
when it’s run by env.
Major options
-i
Ignore the inherited environment, using only the variables and values given
on the command line.
Behavior
With no command_name, print the names and values of all variables in the environ-
ment. Otherwise, use the variable assignments on the command line to modify the
inherited environment, before invoking command_name. With the -i option, env
ignores the inherited environment completely and uses only the supplied variables
and values.
Caveats
When printing, env does not necessarily quote environment variable values cor-
rectly for re-inputting to the shell. Use export -p for that.

unset

Usage
unset [-v | variable ...
unset -f function ...
Purpose
To remove variables and functions from the current shell.

Major options

-f
Unset (remove) the named functions.
-v
Unset (remove) the named variables. This is the default action with no
options.
Behavior

With no options, arguments are treated as variable names and said variables are
removed. The same occurs with the -v option. With the -f option, arguments are
treated as function names and the functions are removed.

| Chapter6: Variables, Making Decisions, and Repeating Actions

The assignment myvar= doesn’t remove myvar, it merely sets it to the
null string. In contrast, unset myvar removes it completely. This differ-
o, ence comes into play with the various “is the variable set” and “is the
variable set but not null” expansions described in the next section.

6.1.2 Parameter Expansion

Parameter expansion is the process by which the shell provides the value of a vari-
able for use in the program; e.g., as the value for a new variable, or as part or all of a
command-line argument. The simplest form is undoubtedly familiar:

reminder="Time to go to the dentist!" Save value in reminder
sleep 120 Wait two minutes
echo $reminder Print message

The shell has more complicated forms that are useful in more specialized situations.
All of these forms enclose the variable’s name in braces (${variable}), and then add
additional syntax telling the shell what to do. Braces by themselves are also useful,
should you need to immediately follow a variable name with a character that might
otherwise be interpreted as part of the name:

reminder="Time to go to the dentist!" Save value in reminder
sleep 120 Wait two minutes
echo _${reminder} Print message with underscores, for emphasis

By default, undefined variables expand to the null (empty) string.
= Sloppy programming can thus lead to disaster:

m -fr /$MYPROGRAM If MYPROGRAM isn't set, disaster strikes!

It thus pays, as always, to program carefully!

6.1.2.1 Expansion operators

The first group of string-handling operators tests for the existence of variables and

allows substitutions of default values under certain conditions. They are listed in
Table 6-1.

Table 6-1. Substitution operators

Operator Substitution

${varname: -word} If varname exists and isn't null, return its value; otherwise, return word.
Purpose: To return a default value if the variable is undefined.
Example: ${count: -0} evaluates to 0 if count is undefined.

${varname :=word} If varname exists and isn't null, return its value; otherwise, set it to word and then return
its value.

Purpose: To set a variable to a default value if it is undefined.
Example: ${count :=0} sets count to 0 if it is undefined.

6.1 Variables and Arithmetic | 113

Table 6-1. Substitution operators (continued)

Operator Substitution

${varname: 'message} If varname exists and isn't null, return its value; otherwise, print varname : message,
and abort the current command or script. Omitting mes sage produces the default mes-
sage parameter null or not set.Note, however, thatinteractive shells do not
have to abort. (Behavior varies across shells; caveat emptor!)

Purpose: To catch errors that result from variables being undefined.

Example: ${count:?"undefined!"} prints count: undefined! and exits if
count is undefined.

${varname :+word} If varname exists and isn't null, return wor d; otherwise, return null.
Purpose: To test for the existence of a variable.
Example: ${count:+1} returns 1 (which could mean “true”) if count is defined.

The colon (:) in each of the operators in Table 6-1 is optional. If the colon is omit-
ted, then change “exists and isn’t null” to “exists” in each definition; i.e., the opera-
tor tests for existence only.

The operators in Table 6-1 have been part of the Bourne shell for more than 20 years.
POSIX standardized additional operators for doing pattern matching and text
removal on variable values. The classic use for the new pattern-matching operators is
in stripping off components of pathnames, such as directory prefixes and filename
suffixes. With that in mind, besides listing the shell’s pattern-matching operators,
Table 6-2 also has examples showing how all of the operators work. For these exam-
ples, assume that the variable path has the value /home/tolstoy/mem/long.file.name.
W N
The patterns used by the operators in Table 6-2 and in other places in
fs\ . the shell, such as the case statement, are all shell “wildcard” patterns.
o} They’re described in detail in “Tilde Expansion and Wildcards” [7.5].
" However we expect that you’re familiar with the basics from your reg-
ular everyday use of the shell.

Table 6-2. Pattern-matching operators

Operator Substitution

${variablettpattern} If the pattern matches the beginning of the variable’s value,
delete the shortest part that matches and return the rest.

Example: ${path#/*/} Result: tolstoy/mem/long.file.name

${variablettipattern} If the pattern matches the beginning of the variable’s value,
delete the longest part that matches and return the rest.

Example: ${pathiftt/*/} Result: long.file.name

${variable%pattern} If the pattern matches the end of the variable’s value, delete

the shortest part that matches and return the rest.

Example: ${path%.*} Result: /home/tolstoy/mem/long.file

114 | Chapter6: Variables, Making Decisions, and Repeating Actions

Table 6-2. Pattern-matching operators (continued)

Operator Substitution

${variablekkpattern} If the pattern matches the end of the variable’s value, delete
the longest part that matches and return the rest.

Example: ${path%%.*} Result: /home/tolstoy/mem/long

These can be hard to remember, so here’s a handy mnemonic device: # matches the
front because number signs precede numbers; % matches the rear because percent
signs follow numbers. Another mnemonic comes from the typical placement (in the
USA, anyway) of the # and % keys on the keyboard. Relative to each other, the # is on
the left, and the % is on the right.

The two patterns used here are /*/, which matches anything between two slashes,
and .*, which matches a dot followed by anything.

Finally, POSIX standardized the string-length operator: ${#variable} returns the
length in characters of the value of $variable:
$ x=supercalifragilisticexpialidocious A famous word with amazing properties

$ echo There are ${#x} characters in $x
There are 34 characters in supercalifragilisticexpialidocious

6.1.2.2 Positional parameters

The so-called positional parameters represent a shell script’s command-line argu-
ments. They also represent a function’s arguments within shell functions. Individual
arguments are named by integer numbers. For historical reasons, you have to enclose
the number in braces if it’s greater than nine:

echo first arg is $1

echo tenth arg is ${10}
You can apply all of the value-testing and pattern-matching operators from the previ-
ous section to the positional parameters as well:

filename=${1:-/dev/tty} Use argument if given, /dev/tty if not
Special “variables” provide access to the total number of arguments that were

passed, and to all the arguments at once:

$#
Provides the total number of arguments passed to the shell script or function. It
is useful for creating loops (covered later in “Looping” [6.4]) to process options
and arguments. For example:

while [$# !'=0] $# decremented by shift, loop will terminate
do

case $1 in

. Process first argument

esac

shift Shift first argument away (see later in text)

done

6.1 Variables and Arithmetic | 115

$*, $@
Represents all the command-line arguments at once. They can be used to pass
the command-line arguments to a program being run by a script or function.

ngn
Represents all the command-line arguments as a single string. Equivalent to "$1
$2 ...". The first character of $IFS is used as the separator for the different values
to create the string. For example:

printf "The arguments were %s\n" "$*"

5"
Represents all the command-line arguments as separate, individual strings.
Equivalent to "$1" "$2" This is the best way to pass the arguments on to
another program, since it preserves any whitespace embedded within each argu-
ment. For example:

lpr "$@" Print each file

The set command serves a number of purposes. (Full information is provided later
in “The set Command” [7.9.1].) When invoked without options, it sets the value of
the positional parameters, throwing away any previously existing values:

set -- hi there how do you do The —— ends options; "hi" starts new arguments

The shift command “lops off” positional parameters from the list, starting at the
left. Upon executing shift, the original value of $1 is gone forever, replaced by the
old value of $2. The value of $2, in turn, becomes the old value of $3, and so on. The
value of $# is decreased by one. shift takes an optional argument, which is a count
of how many arguments to shift off the list. Plain shift is the same as shift 1. Here
is an annotated example that ties all of these things together:

$ set -- hello "hi there" greetings Set new positional parameters

$ echo there are $# total arguments Print the count

there are 3 total arguments

$ for i in $* Loop over arguments individually
do echo i is $i

done

is hello Note that embedded whitespace was lost
is hi

is there

is greetings

for i in $@ Without quotes, $* and $@ are the same
do echo i is $i

done

is hello

is hi

is there

is greetings

for i in "$*" With quotes, $*is one string

do echo i is $i

done

is hello hi there greetings

e - = T T e A e = T 2 = VR,

116 | Chapter6: Variables, Making Decisions, and Repeating Actions

do
done

He He He VOV A

is hello

is hi there
is greetings
$ shift

for i in "$@" With quotes, $@ preserves exact argument values
echo i is $i

Lop off the first argument

$ echo there are now $# arguments Prove that it's now gone
there are now 2 arguments
$ for i in "$@"

> do
> done

echo i is $i

i is hi there
i is greetings

6.1.2.3 Special variables

Besides the special variables we’ve just seen, such as $# and $*, the shell has a num-
ber of additional built-in variables. Some also have single-character, nonalphabetic
names. Others have names consisting of all uppercase letters.

Table 6-3 lists the variables that are built into the shell and that affect its behavior.
All Bourne-style shells have more variables than listed here that either affect interac-
tive use or have other uses when doing shell programming. However, these are what
you can rely upon for portable shell programming.

Table 6-3. POSIX built-in shell variables

Variable

0 (zero)
|

ENV

HOME
IFS

LANG
LC_ALL
LC_COLLATE

Meaning

Number of arguments given to current process.

Command-line arguments to current process. Inside double quotes, expands to individual arguments.
Command-line arguments to current process. Inside double quotes, expands to a single argument.
Options given to shell on invocation.

Exit status of previous command.

Process ID of shell process.

The name of the shell program.

Process ID of last background command. Use this to save process ID numbers for later use with the wait
command.

Used only by interactive shells upon invocation; the value of $ENV is parameter-expanded. The result
should be a full pathname for a file to be read and executed at startup. This is an XSI requirement.

Home (login) directory.

Internal field separator; i.e., the list of characters that act as word separators. Normally set to space, tab,
and newline.

Default name of current locale; overridden by the other LC_* variables.
Name of current locale; overrides LANG and the other LC_* variables.

Name of current locale for character collation (sorting) purposes.

6.1 Variables and Arithmetic | 117

Table 6-3. POSIX built-in shell variables (continued)

Variable
LC_CTYPE
LC_MESSAGES
LINENO
NLSPATH
PATH
PPID

PS1

PS2

PS4

PWD

Meaning
Name of current locale for character class determination during pattern matching.
Name of current language for output messages.

Line number in script or function of the line that just ran.

The location of message catalogs for messages in the language given by $L.C_MESSAGES (XSI).

Search path for commands.
Process ID of parent process.
Primary command prompt string. Defaultis "$ ".

Prompt string for line continuations. Defaultis "> ".

Prompt string for execution tracing with set -x. Defaultis "+

Current working directory.

The special variable $$ is useful in scripting for creating unique (usually temporary)
filenames based on the shell’s process ID number. However, systems that have the
mktemp command should use that instead. Both of the